BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19895877)

  • 1. A combinational supercritical CO2 system for nanoparticle preparation of indomethacin.
    Tozuka Y; Miyazaki Y; Takeuchi H
    Int J Pharm; 2010 Feb; 386(1-2):243-8. PubMed ID: 19895877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman and thermal analysis of indomethacin/PVP solid dispersion enteric microparticles.
    Fini A; Cavallari C; Ospitali F
    Eur J Pharm Biopharm; 2008 Sep; 70(1):409-20. PubMed ID: 18621516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes.
    Rudrangi SR; Bhomia R; Trivedi V; Vine GJ; Mitchell JC; Alexander BD; Wicks SR
    Int J Pharm; 2015 Feb; 479(2):381-90. PubMed ID: 25579867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of indomethacin-saccharin (IMC-SAC) co-crystals prepared by an anti-solvent crystallization process.
    Chun NH; Wang IC; Lee MJ; Jung YT; Lee S; Kim WS; Choi GJ
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):854-61. PubMed ID: 23454054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poorly water-soluble drug nanoparticles via an emulsion-freeze-drying approach.
    Grant N; Zhang H
    J Colloid Interface Sci; 2011 Apr; 356(2):573-8. PubMed ID: 21315369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Preparation of nanopaticles of SCF-CO2 extraction of Magnolia officinalis].
    He S; Zhang S; Lei Z; Zhang Z
    Zhongguo Zhong Yao Za Zhi; 2009 Feb; 34(4):390-3. PubMed ID: 19459296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced release of indomethacin from Pvp/stearic acid microcapsules prepared coupling Co-freeze-drying and ultrasound assisted spray-congealing process.
    Cavallari C; Luppi B; Di Pietra AM; Rodriguez L; Fini A
    Pharm Res; 2007 Mar; 24(3):521-9. PubMed ID: 17252191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosizing drug particles in supercritical fluid processing.
    Pathak P; Meziani MJ; Desai T; Sun YP
    J Am Chem Soc; 2004 Sep; 126(35):10842-3. PubMed ID: 15339159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of nanoparticles of Magnolia bark extract by rapid expansion from supercritical solution into aqueous solutions.
    He S; Zhou B; Zhang S; Lei Z; Zhang Z
    J Microencapsul; 2011; 28(3):183-9. PubMed ID: 21425944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process.
    Sui X; Wei W; Yang L; Zu Y; Zhao C; Zhang L; Yang F; Zhang Z
    Int J Pharm; 2012 Feb; 423(2):471-9. PubMed ID: 22183131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercritical fluid drying of carbohydrates: selection of suitable excipients and process conditions.
    Bouchard A; Jovanović N; Hofland GW; Jiskoot W; Mendes E; Crommelin DJ; Witkamp GJ
    Eur J Pharm Biopharm; 2008 Mar; 68(3):781-94. PubMed ID: 17702554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encapsulation and sustained release of a model drug, indomethacin, using CO(2)-based microencapsulation.
    Liu H; Finn N; Yates MZ
    Langmuir; 2005 Jan; 21(1):379-85. PubMed ID: 15620328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology.
    Padrela L; Rodrigues MA; Velaga SP; Matos HA; de Azevedo EG
    Eur J Pharm Sci; 2009 Aug; 38(1):9-17. PubMed ID: 19477273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of supercritical fluid to preparation of powders of high-molecular weight drugs for inhalation.
    Okamoto H; Danjo K
    Adv Drug Deliv Rev; 2008 Feb; 60(3):433-46. PubMed ID: 17996326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the spraying conditions and nozzle design on the shape and size distribution of particles obtained with supercritical fluid drying.
    Bouchard A; Jovanović N; de Boer AH; Martín A; Jiskoot W; Crommelin DJ; Hofland GW; Witkamp GJ
    Eur J Pharm Biopharm; 2008 Sep; 70(1):389-401. PubMed ID: 18534833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of freeze-dried 2-methoxyestradiol nanoparticle powders.
    Du B; Li XT; Zhao Y; A YM; Zhang ZZ
    Pharmazie; 2010 Jul; 65(7):471-6. PubMed ID: 20662313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying.
    Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction conditions affecting supercritical fluid extraction (SFE) of lycopene from watermelon.
    Katherine LS; Edgar CC; Jerry WK; Luke RH; Julie CD
    Bioresour Technol; 2008 Nov; 99(16):7835-41. PubMed ID: 18378137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution.
    Ohshima H; Miyagishima A; Kurita T; Makino Y; Iwao Y; Sonobe T; Itai S
    Int J Pharm; 2009 Jul; 377(1-2):180-4. PubMed ID: 19446623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.