These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 19896165)
21. Comparison of genotoxic and inflammatory effects of particles generated by wood combustion, a road simulator and collected from street and subway. Karlsson HL; Ljungman AG; Lindbom J; Möller L Toxicol Lett; 2006 Sep; 165(3):203-11. PubMed ID: 16716543 [TBL] [Abstract][Full Text] [Related]
22. Generation of urban road dust from anti-skid and asphalt concrete aggregates. Tervahattu H; Kupiainen KJ; Räisänen M; Mäkelä T; Hillamo R J Hazard Mater; 2006 Apr; 132(1):39-46. PubMed ID: 16426748 [TBL] [Abstract][Full Text] [Related]
23. An in vitro comparison of the toxicological profiles of ground tire particles (TP) and actual tire and road wear particles (TRWP) emissions. Bouredji A; Muresan B; Truong XT; Lumière L; Pourchez J; Forest V Environ Int; 2024 Aug; 190():108885. PubMed ID: 39024828 [TBL] [Abstract][Full Text] [Related]
24. Mechanical properties of concrete containing a high volume of tire-rubber particles. Khaloo AR; Dehestani M; Rahmatabadi P Waste Manag; 2008 Dec; 28(12):2472-82. PubMed ID: 18372166 [TBL] [Abstract][Full Text] [Related]
25. Identification of particles containing chromium and lead in road dust and soakaway sediment by electron probe microanalyser. Murakami M; Nakajima F; Furumai H; Tomiyasu B; Owari M Chemosphere; 2007 May; 67(10):2000-10. PubMed ID: 17275880 [TBL] [Abstract][Full Text] [Related]
26. Toxicity of tire debris leachates. Gualtieri M; Andrioletti M; Vismara C; Milani M; Camatini M Environ Int; 2005 Jul; 31(5):723-30. PubMed ID: 15910969 [TBL] [Abstract][Full Text] [Related]
27. Environmental labeling of car tires--toxicity to Daphnia magna can be used as a screening method. Wik A; Dave G Chemosphere; 2005 Feb; 58(5):645-51. PubMed ID: 15620758 [TBL] [Abstract][Full Text] [Related]
28. Levels of ultrafine particles in different microenvironments--implications to children exposure. Diapouli E; Chaloulakou A; Spyrellis N Sci Total Environ; 2007 Dec; 388(1-3):128-36. PubMed ID: 17888492 [TBL] [Abstract][Full Text] [Related]
29. Tire-wear particles as a source of zinc to the environment. Councell TB; Duckenfield KU; Landa ER; Callender E Environ Sci Technol; 2004 Aug; 38(15):4206-14. PubMed ID: 15352462 [TBL] [Abstract][Full Text] [Related]
30. Tire and road wear particles in the aquatic organisms - A review of source, properties, exposure routes, and biological effects. Zhao T; Zhang Y; Song Q; Meng Q; Zhou S; Cong J Aquat Toxicol; 2024 Aug; 273():107010. PubMed ID: 38917645 [TBL] [Abstract][Full Text] [Related]
31. Particles emitted from indoor combustion sources: size distribution measurement and chemical analysis. Roy AA; Baxla SP; Gupta T; Bandyopadhyaya R; Tripathi SN Inhal Toxicol; 2009 Aug; 21(10):837-48. PubMed ID: 19591538 [TBL] [Abstract][Full Text] [Related]
32. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air. Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489 [TBL] [Abstract][Full Text] [Related]
33. Exposure to particle debris generated from passenger and truck tires induces different genotoxicity and inflammatory responses in the RAW 264.7 cell line. Poma A; Vecchiotti G; Colafarina S; Zarivi O; Arrizza L; Di Carlo P; Di Cola A PLoS One; 2019; 14(9):e0222044. PubMed ID: 31504054 [TBL] [Abstract][Full Text] [Related]
34. Characteristics of tire-road wear particles (TRWPs) and road pavement wear particles (RPWPs) generated through a novel tire abrasion simulator based on real road pavement conditions. Bae SH; Chae E; Park YS; Lee SW; Yun JH; Choi SS Sci Total Environ; 2024 Sep; 944():173948. PubMed ID: 38880134 [TBL] [Abstract][Full Text] [Related]
36. Investigation of characterization method for nanoparticles in roadside atmosphere by thermal desorption-gas chromatography/mass spectrometry using a pyrolyzer. Fushimi A; Tanabe K; Hasegawa S; Kobayashi S Sci Total Environ; 2007 Nov; 386(1-3):83-92. PubMed ID: 17590418 [TBL] [Abstract][Full Text] [Related]
38. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Song Y; Xie S; Zhang Y; Zeng L; Salmon LG; Zheng M Sci Total Environ; 2006 Dec; 372(1):278-86. PubMed ID: 17097135 [TBL] [Abstract][Full Text] [Related]
39. Morphological and light-absorption characteristics of individual BC particles collected in an urban seaside area at Tokaimura, eastern central Japan. Fu FF; Watanabe K; Shinohara N; Xu X; Xu L; Akagi T Sci Total Environ; 2008 Apr; 393(2-3):273-82. PubMed ID: 18262223 [TBL] [Abstract][Full Text] [Related]
40. Airway contraction and cytokine release in isolated rat lungs induced by wear particles from the road and tire interface and road vehicle brakes. Nosratabadi AR; Gustafsson M; Lovén K; Ljunggren SA; Olofsson U; Abbasi S; Blomqvist G; Karlsson H; Ljungman AG; Cassee FR; Gerlofs-Nijland ME; Gudmundsson A Inhal Toxicol; 2023 Dec; 35(13-14):309-323. PubMed ID: 38054445 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]