BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 19896253)

  • 1. Migration of (14)C in the paddy soil-to-rice plant system after (14)C-acetic acid breakdown by microorganisms below the plow layer.
    Ogiyama S; Takeda H; Ishii N; Uchida S
    J Environ Radioact; 2010 Feb; 101(2):177-84. PubMed ID: 19896253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root-uptake of (14)C derived from acetic acid and (14)C transfer to rice edible parts.
    Ogiyama S; Suzuki H; Inubushi K; Takeda H; Uchida S
    Appl Radiat Isot; 2010 Feb; 68(2):256-64. PubMed ID: 19962904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate and impact on microorganisms of rice allelochemicals in paddy soil.
    Kong CH; Wang P; Gu Y; Xu XH; Wang ML
    J Agric Food Chem; 2008 Jul; 56(13):5043-9. PubMed ID: 18540621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil.
    Lu Y; Murase J; Watanabe A; Sugimoto A; Kimura M
    FEMS Microbiol Ecol; 2004 May; 48(2):179-86. PubMed ID: 19712401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport behavior and rice uptake of radiostrontium and radiocesium in flooded paddy soils contaminated in two contrasting ways.
    Choi YH; Lim KM; Jun I; Keum DK; Han MH; Kim IG
    Sci Total Environ; 2011 Dec; 412-413():248-56. PubMed ID: 22071438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexachlorobenzene dechlorination as affected by organic fertilizer and urea applications in two rice planted paddy soils in a pot experiment.
    Liu CY; Jiang X; Yang XL; Song Y
    Sci Total Environ; 2010 Jan; 408(4):958-64. PubMed ID: 19889446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the transfer of 137Cs to rice plants by a dynamic compartment model with a consideration of the soil properties.
    Keum DK; Lee H; Kang HS; Jun I; Choi YH; Lee CW
    J Environ Radioact; 2007; 92(1):1-15. PubMed ID: 17081663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An empirical model of soil chemical properties that regulate methane production in Japanese rice paddy soils.
    Cheng W; Yagi K; Akiyama H; Nishimura S; Sudo S; Fumoto T; Hasegawa T; Hartley AE; Megonigal JP
    J Environ Qual; 2007; 36(6):1920-5. PubMed ID: 17965395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root uptake of radionuclides following their acute soil depositions during the growth of selected food crops.
    Choi YH; Lim KM; Jun I; Park DW; Keum DK; Lee CW
    J Environ Radioact; 2009 Sep; 100(9):746-51. PubMed ID: 19188006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.
    Liu H; Zhang J; Christie P; Zhang F
    Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system.
    Zeng LS; Liao M; Chen CL; Huang CY
    Ecotoxicol Environ Saf; 2007 May; 67(1):67-74. PubMed ID: 16806470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restricted mineralization of fresh organic materials incorporated into a subtropical paddy soil.
    Wu J; Zhou P; Li L; Su Y; Yuan H; Syers JK
    J Sci Food Agric; 2012 Mar; 92(5):1031-7. PubMed ID: 21993911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of radionuclides and stable elements from paddy soil to rice: a review.
    Uchida S; Tagami K; Shang ZR; Choi YH
    J Environ Radioact; 2009 Sep; 100(9):739-45. PubMed ID: 19027203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids.
    Lu Y; Abraham WR; Conrad R
    Environ Microbiol; 2007 Feb; 9(2):474-81. PubMed ID: 17222145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of 13C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities.
    Wu WX; Liu W; Lu HH; Chen YX; Medha D; Janice T
    FEMS Microbiol Ecol; 2009 Jan; 67(1):93-102. PubMed ID: 19049503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil.
    Xu J; Yang L; Wang Z; Dong G; Huang J; Wang Y
    Chemosphere; 2006 Jan; 62(4):602-7. PubMed ID: 16081136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer of 137Cs to rice plants from various paddy soils contaminated under flooded conditions at different growth stages.
    Choi YH; Lim KM; Park HG; Park DW; Kang HS; Lee HS
    J Environ Radioact; 2005; 80(1):45-58. PubMed ID: 15653186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic biodegradation of biphenyl in various paddy soils and river sediment.
    Yang S; Yoshida N; Baba D; Katayama A
    Chemosphere; 2008 Mar; 71(2):328-36. PubMed ID: 17950776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou city, People's Republic of China.
    Liu WX; Shen LF; Liu JW; Wang YW; Li SR
    Bull Environ Contam Toxicol; 2007 Aug; 79(2):209-13. PubMed ID: 17639323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal changes of redox potential and microbial activity in two agricultural soils of tropical Australia: some implications for soil-to-plant transfer of radionuclides.
    Twining JR; Zaw M; Russell R; Wilde K
    J Environ Radioact; 2004; 76(1-2):265-72. PubMed ID: 15245853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.