These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19896357)

  • 1. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells.
    Nam JY; Kim HW; Lim KH; Shin HS; Logan BE
    Biosens Bioelectron; 2010 Jan; 25(5):1155-9. PubMed ID: 19896357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification.
    You SJ; Ren NQ; Zhao QL; Kiely PD; Wang JY; Yang FL; Fu L; Peng L
    Biosens Bioelectron; 2009 Aug; 24(12):3698-701. PubMed ID: 19502045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of different substrates and humic acid on power generation in microbial fuel cell operation.
    Thygesen A; Poulsen FW; Min B; Angelidaki I; Thomsen AB
    Bioresour Technol; 2009 Feb; 100(3):1186-91. PubMed ID: 18815026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is resistance futile? Changing external resistance does not improve microbial fuel cell performance.
    Lyon DY; Buret F; Vogel TM; Monier JM
    Bioelectrochemistry; 2010 Apr; 78(1):2-7. PubMed ID: 19783225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brewery wastewater treatment using air-cathode microbial fuel cells.
    Feng Y; Wang X; Logan BE; Lee H
    Appl Microbiol Biotechnol; 2008 Apr; 78(5):873-80. PubMed ID: 18246346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electricity generation from polyalcohols in single-chamber microbial fuel cells.
    Catal T; Xu S; Li K; Bermek H; Liu H
    Biosens Bioelectron; 2008 Dec; 24(4):855-60. PubMed ID: 18760591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial fuel cells: the effects of configurations, electrolyte solutions, and electrode materials on power generation.
    Li F; Sharma Y; Lei Y; Li B; Zhou Q
    Appl Biochem Biotechnol; 2010 Jan; 160(1):168-81. PubMed ID: 19172235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Litre-scale microbial fuel cells operated in a complete loop.
    Clauwaert P; Mulenga S; Aelterman P; Verstraete W
    Appl Microbiol Biotechnol; 2009 May; 83(2):241-7. PubMed ID: 19183981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved performance of single-chamber microbial fuel cells through control of membrane deformation.
    Zhang X; Cheng S; Huang X; Logan BE
    Biosens Bioelectron; 2010 Mar; 25(7):1825-8. PubMed ID: 20022480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of buffer solutions on the performance of microbial fuel cell electricity generation].
    Qiang L; Yuan LJ; Ding Q
    Huan Jing Ke Xue; 2011 May; 32(5):1524-8. PubMed ID: 21780615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving performance of MFC by design alteration and adding cathodic electrolytes.
    Jadhav GS; Ghangrekar MM
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):319-32. PubMed ID: 18438635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions.
    Stein NE; Hamelers HV; Buisman CN
    Bioelectrochemistry; 2010 Apr; 78(1):87-91. PubMed ID: 19896420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells.
    Cheng S; Logan BE
    Bioresour Technol; 2011 Mar; 102(6):4468-73. PubMed ID: 21273062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells.
    Ahn Y; Logan BE
    Bioresour Technol; 2013 Mar; 132():436-9. PubMed ID: 23433978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electricity-producing bacterial communities in microbial fuel cells.
    Logan BE; Regan JM
    Trends Microbiol; 2006 Dec; 14(12):512-8. PubMed ID: 17049240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells.
    Jia YH; Tran HT; Kim DH; Oh SJ; Park DH; Zhang RH; Ahn DH
    Bioprocess Biosyst Eng; 2008 Jun; 31(4):315-21. PubMed ID: 17909860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel electrode materials to enhance the bacterial adhesion and increase the power generation in microbial fuel cells (MFCs).
    Jiang D; Li B
    Water Sci Technol; 2009; 59(3):557-63. PubMed ID: 19214011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell.
    He Z; Huang Y; Manohar AK; Mansfeld F
    Bioelectrochemistry; 2008 Nov; 74(1):78-82. PubMed ID: 18774345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.