These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19896420)

  • 21. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor.
    Kang KH; Jang JK; Pham TH; Moon H; Chang IS; Kim BH
    Biotechnol Lett; 2003 Aug; 25(16):1357-61. PubMed ID: 14514065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint.
    Wei J; Liang P; Cao X; Huang X
    Environ Sci Technol; 2010 Apr; 44(8):3187-91. PubMed ID: 20345152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of different substrates and humic acid on power generation in microbial fuel cell operation.
    Thygesen A; Poulsen FW; Min B; Angelidaki I; Thomsen AB
    Bioresour Technol; 2009 Feb; 100(3):1186-91. PubMed ID: 18815026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Litre-scale microbial fuel cells operated in a complete loop.
    Clauwaert P; Mulenga S; Aelterman P; Verstraete W
    Appl Microbiol Biotechnol; 2009 May; 83(2):241-7. PubMed ID: 19183981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell.
    Powell EE; Mapiour ML; Evitts RW; Hill GA
    Bioresour Technol; 2009 Jan; 100(1):269-74. PubMed ID: 18614353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Entrapment of live microbial cells in electropolymerized polyaniline and their use as urea biosensor.
    Jha SK; Kanungo M; Nath A; D'Souza SF
    Biosens Bioelectron; 2009 Apr; 24(8):2637-42. PubMed ID: 19230647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells.
    Yi H; Nevin KP; Kim BC; Franks AE; Klimes A; Tender LM; Lovley DR
    Biosens Bioelectron; 2009 Aug; 24(12):3498-503. PubMed ID: 19487117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration.
    Jadhav GS; Ghangrekar MM
    Bioresour Technol; 2009 Jan; 100(2):717-23. PubMed ID: 18768312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film.
    Tan Y; Deng W; Ge B; Xie Q; Huang J; Yao S
    Biosens Bioelectron; 2009 Mar; 24(7):2225-31. PubMed ID: 19153037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH.
    Jung S; Mench MM; Regan JM
    Environ Sci Technol; 2011 Oct; 45(20):9069-74. PubMed ID: 21902172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concentration responses of toxicity sensor with Shewanella oneidensis MR-1 growing in bioelectrochemical systems.
    Wang X; Gao N; Zhou Q
    Biosens Bioelectron; 2013 May; 43():264-7. PubMed ID: 23333921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency.
    Schröder U
    Phys Chem Chem Phys; 2007 Jun; 9(21):2619-29. PubMed ID: 17627307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anaerobes in Bioelectrochemical Systems.
    Kokko ME; Mäkinen AE; Puhakka JA
    Adv Biochem Eng Biotechnol; 2016; 156():263-292. PubMed ID: 26907547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards implementation of a benthic microbial fuel cell in lake Furnas (Azores): phylogenetic affiliation and electrochemical activity of sediment bacteria.
    Martins G; Peixoto L; Ribeiro DC; Parpot P; Brito AG; Nogueira R
    Bioelectrochemistry; 2010 Apr; 78(1):67-71. PubMed ID: 19716775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitive determination of L-lysine with a new amperometric microbial biosensor based on Saccharomyces cerevisiae yeast cells.
    Akyilmaz E; Erdoğan A; Oztürk R; Yaşa I
    Biosens Bioelectron; 2007 Jan; 22(6):1055-60. PubMed ID: 16759846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Challenges in microbial fuel cell development and operation.
    Kim BH; Chang IS; Gadd GM
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):485-94. PubMed ID: 17593364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability.
    Zhang Y; Angelidaki I
    Biotechnol Bioeng; 2011 Oct; 108(10):2339-47. PubMed ID: 21557205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell-based biosensor for rapid screening of pathogens and toxins.
    Banerjee P; Bhunia AK
    Biosens Bioelectron; 2010 Sep; 26(1):99-106. PubMed ID: 20570502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strip-based amperometric detection of myeloperoxidase.
    Windmiller JR; Chinnapareddy S; Santhosh P; Halámek J; Chuang MC; Bocharova V; Tseng TF; Chou TY; Katz E; Wang J
    Biosens Bioelectron; 2010 Oct; 26(2):886-9. PubMed ID: 20708401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.