BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19896565)

  • 1. A single fixation protocol for proteome-wide immunofluorescence localization studies.
    Stadler C; Skogs M; Brismar H; Uhlén M; Lundberg E
    J Proteomics; 2010 Apr; 73(6):1067-78. PubMed ID: 19896565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postfixation detergent treatment for immunofluorescence suppresses localization of some integral membrane proteins.
    Goldenthal KL; Hedman K; Chen JW; August JT; Willingham MC
    J Histochem Cytochem; 1985 Aug; 33(8):813-20. PubMed ID: 3894499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mild fixation and permeabilization protocol for preserving structures of endosomes, focal adhesions, and actin filaments during immunofluorescence analysis.
    Scheffler JM; Schiefermeier N; Huber LA
    Methods Enzymol; 2014; 535():93-102. PubMed ID: 24377919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common fixation-permeabilization methods cause artifactual localization of a type II transmembrane protein.
    Benyair R; Lederkremer GZ
    Microscopy (Oxf); 2016 Dec; 65(6):517-521. PubMed ID: 27587511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the proteome of cellular fractions: focus on secreted proteins.
    Latosinska A; Frantzi M; Mullen W; Vlahou A; Makridakis M
    Methods Mol Biol; 2015; 1243():29-41. PubMed ID: 25384738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential extraction of proteins from paraformaldehyde-fixed cells: lessons from synaptophysin and other membrane proteins.
    Hannah MJ; Weiss U; Huttner WB
    Methods; 1998 Oct; 16(2):170-81. PubMed ID: 9790863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal processing method to obtain four-color confocal fluorescent images of the cytoskeleton and nucleus in three-dimensional chondrocyte cultures.
    Blanc A; Tran-Khanh N; Filion D; Buschmann MD
    J Histochem Cytochem; 2005 Sep; 53(9):1171-5. PubMed ID: 15933071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global organellar proteomics.
    Taylor SW; Fahy E; Ghosh SS
    Trends Biotechnol; 2003 Feb; 21(2):82-8. PubMed ID: 12573857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization.
    Lorenz H; Hailey DW; Lippincott-Schwartz J
    Nat Methods; 2006 Mar; 3(3):205-10. PubMed ID: 16489338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of cytoplasmic streaming by cytochalasin D is superior to paraformaldehyde fixation for measuring FRET between fluorescent protein-tagged Golgi components.
    Poulsen CP; Vereb G; Geshi N; Schulz A
    Cytometry A; 2013 Sep; 83(9):830-8. PubMed ID: 23520174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The subcellular proteome of undifferentiated human embryonic stem cells.
    Sarkar P; Collier TS; Randall SM; Muddiman DC; Rao BM
    Proteomics; 2012 Feb; 12(3):421-30. PubMed ID: 22144211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential paraformaldehyde and methanol fixation for simultaneous flow cytometric analysis of DNA, cell surface proteins, and intracellular proteins.
    Pollice AA; McCoy JP; Shackney SE; Smith CA; Agarwal J; Burholt DR; Janocko LE; Hornicek FJ; Singh SG; Hartsock RJ
    Cytometry; 1992; 13(4):432-44. PubMed ID: 1382010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole blood fixation and permeabilization protocol with red blood cell lysis for flow cytometry of intracellular phosphorylated epitopes in leukocyte subpopulations.
    Chow S; Hedley D; Grom P; Magari R; Jacobberger JW; Shankey TV
    Cytometry A; 2005 Sep; 67(1):4-17. PubMed ID: 16080188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular fractionation for identification of biomarkers: serial detergent extraction by subcellular accessibility and solubility.
    Hwang SI; Han DK
    Methods Mol Biol; 2013; 1002():25-35. PubMed ID: 23625392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fixation of mammalian cells for flow cytometric evaluation of DNA content and nuclear immunofluorescence.
    Schimenti KJ; Jacobberger JW
    Cytometry; 1992; 13(1):48-59. PubMed ID: 1372202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of monocyte membrane proteome perturbation during lipopolysaccharide-induced tolerance using iTRAQ-based quantitative proteomic approach.
    Zhang H; Zhao C; Li X; Zhu Y; Gan CS; Wang Y; Ravasi T; Qian PY; Wong SC; Sze SK
    Proteomics; 2010 Aug; 10(15):2780-9. PubMed ID: 20486119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular localization of the radiation enhancer motexafin gadolinium using interferometric Fourier fluorescence microscopy.
    Woodburn KW
    J Pharmacol Exp Ther; 2001 Jun; 297(3):888-94. PubMed ID: 11356908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput subcellular protein localization using transfected-cell arrays. Subcellular protein localization using cell arrays.
    Hu Y; Janitz M
    Methods Mol Biol; 2011; 706():53-72. PubMed ID: 21104054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of functional interaction networks through consensus localization predictions of the human proteome.
    Park S; Yang JS; Jang SK; Kim S
    J Proteome Res; 2009 Jul; 8(7):3367-76. PubMed ID: 19415893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analyses of cell disruption methods for mitochondrial isolation in high-throughput proteomics study.
    Chaiyarit S; Thongboonkerd V
    Anal Biochem; 2009 Nov; 394(2):249-58. PubMed ID: 19622339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.