These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 19896808)
1. Polydiacetylene vesicles as a novel drug sustained-release system. Guo C; Liu S; Dai Z; Jiang C; Li W Colloids Surf B Biointerfaces; 2010 Mar; 76(1):362-5. PubMed ID: 19896808 [TBL] [Abstract][Full Text] [Related]
2. A promising drug controlled-release system based on diacetylene/phospholipid polymerized vesicles. Guo C; Liu S; Jiang C; Li W; Dai Z; Fritz H; Wu X Langmuir; 2009 Nov; 25(22):13114-9. PubMed ID: 19852472 [TBL] [Abstract][Full Text] [Related]
3. In vitro evaluation and finite element simulation of drug release from polydiacetylene-polyethylene glycol stearate nanovesicles. Guo C; Zeng L; Liu S; Chen Q; Dai Z; Wu X J Nanosci Nanotechnol; 2012 Jan; 12(1):245-51. PubMed ID: 22523972 [TBL] [Abstract][Full Text] [Related]
4. Design of polydiacetylene-phospholipid supramolecules for enhanced stability and sensitivity. Kang DH; Jung HS; Lee J; Seo S; Kim J; Kim K; Suh KY Langmuir; 2012 May; 28(19):7551-6. PubMed ID: 22515382 [TBL] [Abstract][Full Text] [Related]
5. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Liu Y; Pan J; Feng SS Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049 [TBL] [Abstract][Full Text] [Related]
6. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes. Zhao L; Feng SS J Colloid Interface Sci; 2004 Jun; 274(1):55-68. PubMed ID: 15120278 [TBL] [Abstract][Full Text] [Related]
7. Lipid-bilayer-coated nanogels allow for sustained release and enhanced internalization. Qin C; Lv Y; Xu C; Li J; Yin L; He W Int J Pharm; 2018 Nov; 551(1-2):8-13. PubMed ID: 30196141 [TBL] [Abstract][Full Text] [Related]
8. Characterization and in vitro assessment of paclitaxel loaded lipid nanoparticles formulated using modified solvent injection technique. Pandita D; Ahuja A; Velpandian T; Lather V; Dutta T; Khar RK Pharmazie; 2009 May; 64(5):301-10. PubMed ID: 19530440 [TBL] [Abstract][Full Text] [Related]
9. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein. Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207 [TBL] [Abstract][Full Text] [Related]
10. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids. Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914 [TBL] [Abstract][Full Text] [Related]
11. A new method for liposome preparation using a membrane contactor. Jaafar-Maalej C; Charcosset C; Fessi H J Liposome Res; 2011 Sep; 21(3):213-20. PubMed ID: 20860451 [TBL] [Abstract][Full Text] [Related]
12. Fluorogenic pH-sensitive polydiacetylene (PDA) liposomes as a drug carrier. Won SH; Lee JU; Sim SJ J Nanosci Nanotechnol; 2013 Jun; 13(6):3792-800. PubMed ID: 23862409 [TBL] [Abstract][Full Text] [Related]
13. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Zhang Z; Feng SS Biomaterials; 2006 Jul; 27(21):4025-33. PubMed ID: 16564085 [TBL] [Abstract][Full Text] [Related]
14. PLA/PLGA nanoparticles for sustained release of docetaxel. Musumeci T; Ventura CA; Giannone I; Ruozi B; Montenegro L; Pignatello R; Puglisi G Int J Pharm; 2006 Nov; 325(1-2):172-9. PubMed ID: 16887303 [TBL] [Abstract][Full Text] [Related]
15. [Solubilizing and sustained-releasing abilities and safety preliminary evaluation for paclitaxel based on N-octyl-O, N-carboxymethyl chitosan polymeric micelles]. Huo MR; Zhang Y; Zhou JP; Lü L; Liu H; Liu FJ Yao Xue Xue Bao; 2008 Aug; 43(8):855-61. PubMed ID: 18956780 [TBL] [Abstract][Full Text] [Related]
16. Squalenoyl prodrug of paclitaxel: synthesis and evaluation of its incorporation in phospholipid bilayers. Sarpietro MG; Ottimo S; Paolino D; Ferrero A; Dosio F; Castelli F Int J Pharm; 2012 Oct; 436(1-2):135-40. PubMed ID: 22728161 [TBL] [Abstract][Full Text] [Related]
17. Self-assembly properties, aggregation behavior and prospective application for sustained drug delivery of a drug-participating catanionic system. Zhao L; Liu J; Zhang L; Gao Y; Zhang Z; Luan Y Int J Pharm; 2013 Aug; 452(1-2):108-15. PubMed ID: 23644346 [TBL] [Abstract][Full Text] [Related]
18. Effects of lipid chain unsaturation and headgroup type on molecular interactions between paclitaxel and phospholipid within model biomembrane. Zhao L; Feng SS J Colloid Interface Sci; 2005 May; 285(1):326-35. PubMed ID: 15797430 [TBL] [Abstract][Full Text] [Related]
19. Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: In vitro study with finite and infinite dosage application. Chen M; Liu X; Fahr A Int J Pharm; 2011 Apr; 408(1-2):223-34. PubMed ID: 21316430 [TBL] [Abstract][Full Text] [Related]
20. Tocopheryl succinate-based lipid nanospheres for paclitaxel delivery: preparation, characters, and in vitro release kinetics. Shi K; Jiang Y; Zhang M; Wang Y; Cui F Drug Deliv; 2010 Jan; 17(1):1-10. PubMed ID: 19941405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]