These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 19896876)
1. Template-based structure prediction and molecular dynamics simulation study of two mammalian Aspartyl-tRNA synthetases. Ul-Haq Z; Khan W; Zarina S; Sattar R; Moin ST J Mol Graph Model; 2010 Jan; 28(5):401-12. PubMed ID: 19896876 [TBL] [Abstract][Full Text] [Related]
2. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. Sauter C; Lorber B; Cavarelli J; Moras D; Giegé R J Mol Biol; 2000 Jun; 299(5):1313-24. PubMed ID: 10873455 [TBL] [Abstract][Full Text] [Related]
3. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase. Cavarelli J; Rees B; Ruff M; Thierry JC; Moras D Nature; 1993 Mar; 362(6416):181-4. PubMed ID: 8450889 [TBL] [Abstract][Full Text] [Related]
4. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. Archontis G; Simonson T; Karplus M J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602 [TBL] [Abstract][Full Text] [Related]
5. An intricate RNA structure with two tRNA-derived motifs directs complex formation between yeast aspartyl-tRNA synthetase and its mRNA. Ryckelynck M; Masquida B; Giegé R; Frugier M J Mol Biol; 2005 Dec; 354(3):614-29. PubMed ID: 16257416 [TBL] [Abstract][Full Text] [Related]
6. Structure of the nondiscriminating aspartyl-tRNA synthetase from the crenarchaeon Sulfolobus tokodaii strain 7 reveals the recognition mechanism for two different tRNA anticodons. Sato Y; Maeda Y; Shimizu S; Hossain MT; Ubukata S; Suzuki K; Sekiguchi T; Takénaka A Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1042-7. PubMed ID: 17881821 [TBL] [Abstract][Full Text] [Related]
7. Specific amino acid recognition by aspartyl-tRNA synthetase studied by free energy simulations. Archontis G; Simonson T; Moras D; Karplus M J Mol Biol; 1998 Feb; 275(5):823-46. PubMed ID: 9480772 [TBL] [Abstract][Full Text] [Related]
8. Expanding tRNA recognition of a tRNA synthetase by a single amino acid change. Feng L; Tumbula-Hansen D; Toogood H; Soll D Proc Natl Acad Sci U S A; 2003 May; 100(10):5676-81. PubMed ID: 12730374 [TBL] [Abstract][Full Text] [Related]
9. Peculiar inhibition of human mitochondrial aspartyl-tRNA synthetase by adenylate analogs. Messmer M; Blais SP; Balg C; Chênevert R; Grenier L; Lagüe P; Sauter C; Sissler M; Giegé R; Lapointe J; Florentz C Biochimie; 2009 May; 91(5):596-603. PubMed ID: 19254750 [TBL] [Abstract][Full Text] [Related]
10. Single amino acid changes in AspRS reveal alternative routes for expanding its tRNA repertoire in vivo. Martin F; Barends S; Eriani G Nucleic Acids Res; 2004; 32(13):4081-9. PubMed ID: 15289581 [TBL] [Abstract][Full Text] [Related]
11. Toward the full set of human mitochondrial aminoacyl-tRNA synthetases: characterization of AspRS and TyrRS. Bonnefond L; Fender A; Rudinger-Thirion J; Giegé R; Florentz C; Sissler M Biochemistry; 2005 Mar; 44(12):4805-16. PubMed ID: 15779907 [TBL] [Abstract][Full Text] [Related]
12. Ligand dependent intra and inter subunit communication in human tryptophanyl tRNA synthetase as deduced from the dynamics of structure networks. Hansia P; Ghosh A; Vishveshwara S Mol Biosyst; 2009 Dec; 5(12):1860-72. PubMed ID: 19763332 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of the archaeal asparagine synthetase: interrelation with aspartyl-tRNA and asparaginyl-tRNA synthetases. Blaise M; Fréchin M; Oliéric V; Charron C; Sauter C; Lorber B; Roy H; Kern D J Mol Biol; 2011 Sep; 412(3):437-52. PubMed ID: 21820443 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics simulations of cognate and non-cognate AspRS-tRNA Ramakrishnan C; Nagarajan R; Sekijima M; Michael Gromiha M J Biomol Struct Dyn; 2021 Feb; 39(2):493-501. PubMed ID: 31900102 [TBL] [Abstract][Full Text] [Related]
15. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain. Lee KW; Briggs JM Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565 [TBL] [Abstract][Full Text] [Related]
16. Electrostatic potential in aminoacylation by aspartyl-tRNAs synthetase. Tsunoda M; Takenaka A; Cavarelli J; Rees B; Thierry JC; Moras D Nucleic Acids Symp Ser; 1995; (34):65-6. PubMed ID: 8841554 [TBL] [Abstract][Full Text] [Related]
17. Aminoacyl thioester chemistry of class II aminoacyl-tRNA synthetases. Jakubowski H Biochemistry; 1997 Sep; 36(37):11077-85. PubMed ID: 9287150 [TBL] [Abstract][Full Text] [Related]
18. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon. Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993 [TBL] [Abstract][Full Text] [Related]
19. Structural basis of the water-assisted asparagine recognition by asparaginyl-tRNA synthetase. Iwasaki W; Sekine S; Kuroishi C; Kuramitsu S; Shirouzu M; Yokoyama S J Mol Biol; 2006 Jul; 360(2):329-42. PubMed ID: 16753178 [TBL] [Abstract][Full Text] [Related]
20. A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding. Frugier M; Moulinier L; Giegé R EMBO J; 2000 May; 19(10):2371-80. PubMed ID: 10811628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]