These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 19896923)

  • 21. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR.
    Tang M; Waring AJ; Hong M
    J Am Chem Soc; 2007 Sep; 129(37):11438-46. PubMed ID: 17705480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and dynamical surface properties of phosphatidylethanolamine containing membranes.
    Bouchet AM; Frías MA; Lairion F; Martini F; Almaleck H; Gordillo G; Disalvo EA
    Biochim Biophys Acta; 2009 May; 1788(5):918-25. PubMed ID: 19248762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of phosphatidylethanolamine lipids in the stabilization of protein-lipid contacts.
    Scarlata S; Gruner SM
    Biophys Chem; 1997 Sep; 67(1-3):269-79. PubMed ID: 9397529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thin liquid films and monolayers of DMPC mixed with PEG and phospholipid linked PEG.
    Georgiev GA; Georgiev GD; Lalchev Z
    Eur Biophys J; 2006 Apr; 35(4):352-62. PubMed ID: 16447038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monomethylarsonate (MMAv) exerts stronger effects than arsenate on the structure and thermotropic properties of phospholipids bilayers.
    Suwalsky M; Rivera C; Sotomayor CP; Jemiola-Rzeminska M; Strzalka K
    Biophys Chem; 2008 Jan; 132(1):1-8. PubMed ID: 17961907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of headgroup on the physicochemical properties of phospholipid bilayers in electric fields: size matters.
    Madrid E; Horswell SL
    Langmuir; 2013 Feb; 29(5):1695-708. PubMed ID: 23331178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature and pH sensitivity of a stabilized self-nanoemulsion formed using an ionizable lipid-like material via an oil-to-surfactant transition.
    Tanaka H; Oasa S; Kinjo M; Tange K; Nakai Y; Harashima H; Akita H
    Colloids Surf B Biointerfaces; 2017 Mar; 151():95-101. PubMed ID: 27987460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of lipid molecule headgroup mismatch on non steroidal anti-inflammatory drugs induced membrane fusion.
    Mondal Roy S; Sarkar M
    Langmuir; 2011 Dec; 27(24):15054-64. PubMed ID: 21999838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane structural change of dimyristoylphosphatidylcholine liposome on the interaction with polyethyleneimine.
    Zhong W; Jiang L; Wang X; Huang A; Li L; Ma L
    Colloids Surf B Biointerfaces; 2018 Jul; 167():509-515. PubMed ID: 29729628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anomalous swelling in phospholipid bilayers is not coupled to the formation of a ripple phase.
    Mason PC; Nagle JF; Epand RM; Katsaras J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):030902. PubMed ID: 11308623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dynamics simulations and experimental studies of binding and mobility of 7-tert-butyldimethylsilyl-10-hydroxycamptothecin and its 20(S)-4-aminobutyrate ester in DMPC membranes.
    Xiang TX; Jiang ZQ; Song L; Anderson BD
    Mol Pharm; 2006; 3(5):589-600. PubMed ID: 17009858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of polar head groups on the activity of aspartyl protease adsorbed to lipid membranes.
    Martini MF; Disalvo EA
    Chem Phys Lipids; 2003 Jan; 122(1-2):177-83. PubMed ID: 12598050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN
    Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of arginine in mediating protein-carbon nanotube interactions.
    Wu E; Coppens MO; Garde S
    Langmuir; 2015 Feb; 31(5):1683-92. PubMed ID: 25575129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Number of free hydroxyl groups on bile acid phospholipids determines the fluidity and hydration of model membranes.
    Sreekanth V; Bajaj A
    J Phys Chem B; 2013 Oct; 117(40):12135-44. PubMed ID: 24079709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of tetracaine on DMPC and DMPC+cholesterol biomembrane models: liposomes and monolayers.
    Serro AP; Galante R; Kozica A; Paradiso P; da Silva AM; Luzyanin KV; Fernandes AC; Saramago B
    Colloids Surf B Biointerfaces; 2014 Apr; 116():63-71. PubMed ID: 24448175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Span 80 vesicles have a more fluid, flexible and "wet" surface than phospholipid liposomes.
    Hayashi K; Shimanouchi T; Kato K; Miyazaki T; Nakamura A; Umakoshi H
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):28-35. PubMed ID: 21621983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of various phospholipid mixtures as emulsifiers or dispersing agents in nanoparticle drug carrier preparations.
    Ishii F; Nii T
    Colloids Surf B Biointerfaces; 2005 Apr; 41(4):257-62. PubMed ID: 15748821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of alpha-tocopherol with model human high-density lipoproteins.
    Massey JB; Pownall HJ
    Biophys J; 1998 Dec; 75(6):2923-31. PubMed ID: 9826613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Properties of palmitoyl phosphatidylcholine, sphingomyelin, and dihydrosphingomyelin bilayer membranes as reported by different fluorescent reporter molecules.
    Nyholm T; Nylund M; Söderholm A; Slotte JP
    Biophys J; 2003 Feb; 84(2 Pt 1):987-97. PubMed ID: 12547780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.