These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19897102)

  • 1. Monte Carlo simulation in establishing analytical quality requirements for clinical laboratory tests meeting clinical needs.
    Boyd JC; Bruns DE
    Methods Enzymol; 2009; 467():411-433. PubMed ID: 19897102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of measurement frequency on analytical quality required for glucose measurements in intensive care units: assessments by simulation models.
    Boyd JC; Bruns DE
    Clin Chem; 2014 Apr; 60(4):644-50. PubMed ID: 24430017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quality specifications for glucose meters: assessment by simulation modeling of errors in insulin dose.
    Boyd JC; Bruns DE
    Clin Chem; 2001 Feb; 47(2):209-14. PubMed ID: 11159768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Precision and Bias Specifications Required to Achieve the 2018 FDA Guidance Criteria for Glucose Meter Performance Using Simulation Models.
    Lyon AW; Lyon ME
    J Diabetes Sci Technol; 2020 May; 14(3):513-518. PubMed ID: 31752535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simulation Study to Assess the Effect of Analytic Error on Neonatal Glucose Measurements Using the Canadian Pediatric Society Position Statement Action Thresholds.
    Inman M; Parker K; Strueby L; Lyon AW; Lyon ME
    J Diabetes Sci Technol; 2020 May; 14(3):519-525. PubMed ID: 31694397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of measurement frequency on the domains of glycemic control in the critically ill--a Monte Carlo simulation.
    Krinsley JS; Bruns DE; Boyd JC
    J Diabetes Sci Technol; 2015 Mar; 9(2):237-45. PubMed ID: 25568143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The discordance rate, a new concept for combining diagnostic decisions with analytical performance characteristics. 2. Defining analytical goals applied to the diagnosis of type 2 diabetes by blood glucose concentrations.
    Haeckel R; Wosniok W
    Clin Chem Lab Med; 2004 Feb; 42(2):198-203. PubMed ID: 15061361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of blood glucose meter and carbohydrate estimation accuracy.
    Virdi NS; Mahoney JJ
    J Diabetes Sci Technol; 2012 Jul; 6(4):921-6. PubMed ID: 22920820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose meter performance criteria for tight glycemic control estimated by simulation modeling.
    Karon BS; Boyd JC; Klee GG
    Clin Chem; 2010 Jul; 56(7):1091-7. PubMed ID: 20511447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Glucose Meter Error on Glycemic Variability and Time in Target Range During Glycemic Control After Cardiovascular Surgery.
    Karon BS; Meeusen JW; Bryant SC
    J Diabetes Sci Technol; 2015 Aug; 10(2):336-42. PubMed ID: 26311721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new concept to derive permissible limits for analytical imprecision and bias considering diagnostic requirements and technical state-of-the-art.
    Haeckel R; Wosniok W
    Clin Chem Lab Med; 2011 Apr; 49(4):623-35. PubMed ID: 21345158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation and qualitative analysis of glucose variability, mean glucose, and hypoglycemia after subcutaneous insulin therapy for stress hyperglycemia.
    Strilka RJ; Stull MC; Clemens MS; McCaver SC; Armen SB
    Theor Biol Med Model; 2016 Jan; 13():3. PubMed ID: 26819233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical evaluation of the Optium Xido blood glucose meter.
    Solnica B; Naskalski J; Gernand W
    Clin Chem Lab Med; 2008; 46(1):143-7. PubMed ID: 18034638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of analytical error on the assessment of cardiac risk by the high-sensitivity C-reactive protein and lipid screening model.
    Middleton J
    Clin Chem; 2002 Nov; 48(11):1955-62. PubMed ID: 12406981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Simulation Study of Glucose Control Methods Designed for Use in the Intensive Care Unit Setting via a Novel Controller Scoring Metric.
    DeJournett J; DeJournett L
    J Diabetes Sci Technol; 2017 Nov; 11(6):1207-1217. PubMed ID: 28637358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the analytical performance of the coulometry-based Optium Omega blood glucose meter.
    Solnica B; Kusnierz-Cabala B; Slowinska-Solnica K; Witek P; Cempa A; Malecki MT
    J Diabetes Sci Technol; 2011 Nov; 5(6):1612-7. PubMed ID: 22226286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of variability in assay bias and imprecision on external quality assessment bias and imprecision measures.
    Hawkins RC
    Ann Clin Biochem; 2006 Nov; 43(Pt 6):507-9. PubMed ID: 17132284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of sensor and measurement timing errors on model-based insulin sensitivity.
    Pretty CG; Signal M; Fisk L; Penning S; Le Compte A; Shaw GM; Desaive T; Chase JG
    Comput Methods Programs Biomed; 2014 May; 114(3):e79-86. PubMed ID: 24074543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical and clinical precision of continuous glucose monitoring in Colombian patients treated with insulin infusion pump with automated suspension in hypoglycemia.
    Gómez AM; Marín Sánchez A; Muñoz OM; Colón Peña CA
    Endocrinol Nutr; 2015 Dec; 62(10):485-92. PubMed ID: 26531841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of split-sample proficiency testing for cholesterol by use of a computer simulation model.
    Bennett ST; Connelly DP; Eckfeldt JH
    Clin Chem; 1991 Apr; 37(4):497-503. PubMed ID: 2015662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.