These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
868 related articles for article (PubMed ID: 19897239)
1. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Liu Y; Chan-Park MB Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239 [TBL] [Abstract][Full Text] [Related]
2. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Liu Y; Chan-Park MB Biomaterials; 2009 Jan; 30(2):196-207. PubMed ID: 18922573 [TBL] [Abstract][Full Text] [Related]
3. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921 [TBL] [Abstract][Full Text] [Related]
4. Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Benton JA; DeForest CA; Vivekanandan V; Anseth KS Tissue Eng Part A; 2009 Nov; 15(11):3221-30. PubMed ID: 19374488 [TBL] [Abstract][Full Text] [Related]
5. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. LaNasa SM; Bryant SJ Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460 [TBL] [Abstract][Full Text] [Related]
6. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Wang F; Li Z; Lannutti JL; Wagner WR; Guan J Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136 [TBL] [Abstract][Full Text] [Related]
7. Impact of endothelial cells on 3D cultured smooth muscle cells in a biomimetic hydrogel. Liu Y; Rayatpisheh S; Chew SY; Chan-Park MB ACS Appl Mater Interfaces; 2012 Mar; 4(3):1378-87. PubMed ID: 22296557 [TBL] [Abstract][Full Text] [Related]
8. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Gonen-Wadmany M; Oss-Ronen L; Seliktar D Biomaterials; 2007 Sep; 28(26):3876-86. PubMed ID: 17576008 [TBL] [Abstract][Full Text] [Related]
9. In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching. Sokic S; Christenson M; Larson J; Papavasiliou G Macromol Biosci; 2014 May; 14(5):731-9. PubMed ID: 24443002 [TBL] [Abstract][Full Text] [Related]
10. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Lévesque SG; Lim RM; Shoichet MS Biomaterials; 2005 Dec; 26(35):7436-46. PubMed ID: 16023718 [TBL] [Abstract][Full Text] [Related]
11. Influence of soluble PEG-OH incorporation in a 3D cell-laden PEG-fibrinogen (PF) hydrogel on smooth muscle cell morphology and growth. Lee BH; Tin SP; Chaw SY; Cao Y; Xia Y; Steele TW; Seliktar D; Bianco-Peled H; Venkatraman SS J Biomater Sci Polym Ed; 2014; 25(4):394-409. PubMed ID: 24304216 [TBL] [Abstract][Full Text] [Related]
12. Hydrodynamic spinning of hydrogel fibers. Hu M; Deng R; Schumacher KM; Kurisawa M; Ye H; Purnamawati K; Ying JY Biomaterials; 2010 Feb; 31(5):863-9. PubMed ID: 19878994 [TBL] [Abstract][Full Text] [Related]
13. Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Daniele MA; Adams AA; Naciri J; North SH; Ligler FS Biomaterials; 2014 Feb; 35(6):1845-56. PubMed ID: 24314597 [TBL] [Abstract][Full Text] [Related]
14. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats. Jwo SC; Chiu CH; Tang SJ; Hsieh MF Biomed Mater; 2013 Dec; 8(6):065002. PubMed ID: 24225182 [TBL] [Abstract][Full Text] [Related]
15. Chemically cross-linked chitosan hydrogel loaded with gelatin for chondrocyte encapsulation. Hu X; Li D; Gao C Biotechnol J; 2011 Nov; 6(11):1388-96. PubMed ID: 21751389 [TBL] [Abstract][Full Text] [Related]
16. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Almany L; Seliktar D Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249 [TBL] [Abstract][Full Text] [Related]
17. A biomimetic porous hydrogel of gelatin and glycosaminoglycans cross-linked with transglutaminase and its application in the culture of hepatocytes. De Colli M; Massimi M; Barbetta A; Di Rosario BL; Nardecchia S; Conti Devirgiliis L; Dentini M Biomed Mater; 2012 Oct; 7(5):055005. PubMed ID: 22832766 [TBL] [Abstract][Full Text] [Related]
18. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension. Namba RM; Cole AA; Bjugstad KB; Mahoney MJ Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891 [TBL] [Abstract][Full Text] [Related]
19. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness. Keeney M; Onyiah S; Zhang Z; Tong X; Han LH; Yang F Biomaterials; 2013 Dec; 34(37):9657-65. PubMed ID: 24011715 [TBL] [Abstract][Full Text] [Related]
20. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Wang LS; Chung JE; Chan PP; Kurisawa M Biomaterials; 2010 Feb; 31(6):1148-57. PubMed ID: 19892395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]