BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19897270)

  • 21. Lactobacillus reuteri NAD(P)H oxidase: Properties and coexpression with propanediol-utilization enzymes for enhancing 3-hydroxypropionic acid production from 3-hydroxypropionaldehyde.
    Dishisha T; Sabet-Azad R; Arieta V; Hatti-Kaul R
    J Biotechnol; 2019 Jan; 289():135-143. PubMed ID: 30503904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semicarbazide-functionalized resin as a new scavenger for in situ recovery of 3-hydroxypropionaldehyde during biotransformation of glycerol by Lactobacillus reuteri.
    Sardari RR; Dishisha T; Pyo SH; Hatti-Kaul R
    J Biotechnol; 2014 Dec; 192 Pt A():223-30. PubMed ID: 25456063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of 3-hydroxypropionaldehyde in silage inoculated with Lactobacillus coryniformis plus glycerol.
    Tanaka O; Komatsu T; Oshibe A; Cai Y; Miyazaki S; Nakanishi K
    Biosci Biotechnol Biochem; 2009 Jul; 73(7):1494-9. PubMed ID: 19584558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prevention of late blowing defect by reuterin produced in cheese by a Lactobacillus reuteri adjunct.
    Gómez-Torres N; Ávila M; Gaya P; Garde S
    Food Microbiol; 2014 Sep; 42():82-8. PubMed ID: 24929721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of high amounts of 3-hydroxypropionaldehyde from glycerol by Lactobacillus reuteri with strongly increased biocatalyst lifetime and productivity.
    Krauter H; Willke T; Vorlop KD
    N Biotechnol; 2012 Jan; 29(2):211-7. PubMed ID: 21729774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human feces.
    Cleusix V; Lacroix C; Vollenweider S; Le Blay G
    FEMS Microbiol Ecol; 2008 Jan; 63(1):56-64. PubMed ID: 18028400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of reuterin-producing Lactobacillus reuteri coupled with glycerol on the volatile fraction, odour and aroma of semi-hard ewe milk cheese.
    Gómez-Torres N; Ávila M; Delgado D; Garde S
    Int J Food Microbiol; 2016 Sep; 232():103-10. PubMed ID: 27289193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde.
    Slininger PJ; Bothast RJ
    Appl Environ Microbiol; 1985 Dec; 50(6):1444-50. PubMed ID: 3911907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation.
    Sriramulu DD; Liang M; Hernandez-Romero D; Raux-Deery E; Lünsdorf H; Parsons JB; Warren MJ; Prentice MB
    J Bacteriol; 2008 Jul; 190(13):4559-67. PubMed ID: 18469107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains.
    Burgé G; Saulou-Bérion C; Moussa M; Allais F; Athes V; Spinnler HE
    J Microbiol; 2015 Oct; 53(10):702-10. PubMed ID: 26428921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01.
    Hao J; Wang W; Tian J; Li J; Liu D
    J Ind Microbiol Biotechnol; 2008 Jul; 35(7):735-41. PubMed ID: 18365261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production.
    Morita H; Toh H; Fukuda S; Horikawa H; Oshima K; Suzuki T; Murakami M; Hisamatsu S; Kato Y; Takizawa T; Fukuoka H; Yoshimura T; Itoh K; O'Sullivan DJ; McKay LL; Ohno H; Kikuchi J; Masaoka T; Hattori M
    DNA Res; 2008 Jun; 15(3):151-61. PubMed ID: 18487258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and structural characterization of 3-hydroxypropionaldehyde and its derivatives.
    Vollenweider S; Grassi G; König I; Puhan Z
    J Agric Food Chem; 2003 May; 51(11):3287-93. PubMed ID: 12744656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient poly(3-hydroxypropionate) production from glycerol using Lactobacillus reuteri and recombinant Escherichia coli harboring L. reuteri propionaldehyde dehydrogenase and Chromobacterium sp. PHA synthase genes.
    Linares-Pastén JA; Sabet-Azad R; Pessina L; Sardari RR; Ibrahim MH; Hatti-Kaul R
    Bioresour Technol; 2015 Mar; 180():172-6. PubMed ID: 25600014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity of Lactobacillus reuteri Strains in Converting Glycerol into 3-Hydroxypropionic Acid.
    Burgé G; Saulou-Bérion C; Moussa M; Pollet B; Flourat A; Allais F; Athès V; Spinnler HE
    Appl Biochem Biotechnol; 2015 Oct; 177(4):923-39. PubMed ID: 26319567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of reuterin in a fermented milk product by Lactobacillus reuteri: Inhibition of pathogens, spoilage microorganisms, and lactic acid bacteria.
    Ortiz-Rivera Y; Sánchez-Vega R; Gutiérrez-Méndez N; León-Félix J; Acosta-Muñiz C; Sepulveda DR
    J Dairy Sci; 2017 Jun; 100(6):4258-4268. PubMed ID: 28342608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sugar-glycerol cofermentations by Lactobacillus hilgardii isolated from wine.
    Pasteris SE; Strasser de Saad AM
    J Agric Food Chem; 2009 May; 57(9):3853-8. PubMed ID: 19323470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved production of 3-hydroxypropionaldehyde by complex formation with bisulfite during biotransformation of glycerol.
    Sardari RR; Dishisha T; Pyo SH; Hatti-Kaul R
    Biotechnol Bioeng; 2013 Apr; 110(4):1243-8. PubMed ID: 23172314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin.
    Engels C; Schwab C; Zhang J; Stevens MJ; Bieri C; Ebert MO; McNeill K; Sturla SJ; Lacroix C
    Sci Rep; 2016 Nov; 6():36246. PubMed ID: 27819285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High yield 1,3-propanediol production by rational engineering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii.
    Maervoet VE; De Maeseneire SL; Avci FG; Beauprez J; Soetaert WK; De Mey M
    Microb Cell Fact; 2016 Jan; 15():23. PubMed ID: 26822953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.