BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19897344)

  • 1. Cyclodextrins in DNA decompaction.
    González-Pérez A; Carlstedt J; Dias RS; Lindman B
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):20-7. PubMed ID: 19897344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of DNA from surfactant complexes induced by 2-hydroxypropyl-beta-cyclodextrin.
    Carlstedt J; González-Pérez A; Alatorre-Meda M; Dias RS; Lindman B
    Int J Biol Macromol; 2010 Mar; 46(2):153-8. PubMed ID: 20025900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclodextrin-surfactant complex: a new route in DNA decompaction.
    González-Pérez A; Dias RS; Nylander T; Lindman B
    Biomacromolecules; 2008 Mar; 9(3):772-5. PubMed ID: 18257531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decompaction of cationic gemini surfactant-induced DNA condensates by beta-cyclodextrin or anionic surfactant.
    Cao M; Deng M; Wang XL; Wang Y
    J Phys Chem B; 2008 Oct; 112(43):13648-54. PubMed ID: 18839984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A versatile approach towards the compaction, decompaction, and immobilization of DNA at interfaces by using cyclodextrins.
    González-Pérez A; Ruso JM
    Chemphyschem; 2013 Aug; 14(11):2544-53. PubMed ID: 23687071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compaction and decompaction of DNA induced by the cationic surfactant CTAB.
    Grueso E; Cerrillos C; Hidalgo J; Lopez-Cornejo P
    Langmuir; 2012 Jul; 28(30):10968-79. PubMed ID: 22755509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorin p6 as a fluorescent probe for the investigation of surfactant-cyclodextrin interactions.
    Mishra PP; Adhikary R; Lahiri P; Datta A
    Photochem Photobiol Sci; 2006 Aug; 5(8):741-7. PubMed ID: 16886089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta-cyclodextrin in DNA decompaction: an imaging approach.
    Gonzalez-Perez A
    Front Biosci (Elite Ed); 2010 Jan; 2(2):684-93. PubMed ID: 20036912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoretic properties of complexes between DNA and the cationic surfactant cetyltrimethylammonium bromide.
    Dias RS; Svingen R; Gustavsson B; Lindman B; Miguel MG; Akerman B
    Electrophoresis; 2005 Aug; 26(15):2908-17. PubMed ID: 16078189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into cyclodextrin-modulated interactions between protein and surfactant at specific and nonspecific binding stages.
    Liu Y; Liu Y; Guo R
    J Colloid Interface Sci; 2010 Nov; 351(1):180-9. PubMed ID: 20701921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Condensation and decondensation of DNA by cationic surfactant, spermine, or cationic surfactant-cyclodextrin mixtures: macroscopic phase behavior, aggregate properties, and dissolution mechanisms.
    Carlstedt J; Lundberg D; Dias RS; Lindman B
    Langmuir; 2012 May; 28(21):7976-89. PubMed ID: 22546152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity relationship of cyclodextrin/biocidal double-tailed ammonium surfactant host-guest complexes: towards a delivery molecular mechanism?
    Leclercq L; Nardello-Rataj V; Rauwel G; Aubry JM
    Eur J Pharm Sci; 2010 Oct; 41(2):265-75. PubMed ID: 20615466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA condensation induced by cationic surfactant: a viscosimetry and dynamic light scattering study.
    Marchetti S; Onori G; Cametti C
    J Phys Chem B; 2005 Mar; 109(8):3676-80. PubMed ID: 16851406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights in cyclodextrin: surfactant mixed systems from the use of neutral and anionic cyclodextrin derivatives.
    García-Río L; Méndez M; Paleo MR; Sardina FJ
    J Phys Chem B; 2007 Nov; 111(44):12756-64. PubMed ID: 17939704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of cyclodextrins on the proliferation of HaCaT keratinocytes in vitro.
    Hipler UC; Schönfelder U; Hipler C; Elsner P
    J Biomed Mater Res A; 2007 Oct; 83(1):70-9. PubMed ID: 17380497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between DNA and cationic surfactants: effect of DNA conformation and surfactant headgroup.
    Dias RS; Magno LM; Valente AJ; Das D; Das PK; Maiti S; Miguel MG; Lindman B
    J Phys Chem B; 2008 Nov; 112(46):14446-52. PubMed ID: 18774843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible DNA compaction.
    González-Pérez A
    Curr Top Med Chem; 2014; 14(6):766-73. PubMed ID: 24444152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-order phase transition in large single duplex DNA induced by a nonionic surfactant.
    Mel'nikov SM; Yoshikawa K
    Biochem Biophys Res Commun; 1997 Jan; 230(3):514-7. PubMed ID: 9015352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coil-globule transition of DNA molecules induced by cationic surfactants: a dynamic light scattering study.
    Dias RS; Innerlohinger J; Glatter O; Miguel MG; Lindman B
    J Phys Chem B; 2005 May; 109(20):10458-63. PubMed ID: 16852267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cationic agents for DNA compaction.
    Gaweda S; Morán MC; Pais AA; Dias RS; Schillén K; Lindman B; Miguel MG
    J Colloid Interface Sci; 2008 Jul; 323(1):75-83. PubMed ID: 18440012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.