These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19897375)

  • 1. The effect of source chemical composition on the self-attenuation corrections for low-energy gamma-rays in soil samples.
    Carrazana González J; Cornejo Díaz N; Jurado Vargas M; Capote Ferrera E
    Appl Radiat Isot; 2010 Feb; 68(2):360-3. PubMed ID: 19897375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basic considerations for Monte Carlo calculations in soil.
    Wielopolski L; Song Z; Orion I; Hanson AL; Hendrey G
    Appl Radiat Isot; 2005 Jan; 62(1):97-107. PubMed ID: 15498691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of coincidence summing corrections computed by the ETNA software.
    Lépy MC; Brun P; Collin C; Plagnard J
    Appl Radiat Isot; 2006; 64(10-11):1340-5. PubMed ID: 16600602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascade summing effects in close geometry gamma-ray spectrometry.
    Johnston PN; Hult M; Gasparro J
    Appl Radiat Isot; 2006; 64(10-11):1323-8. PubMed ID: 16580218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of self-absorption corrections for gamma analysis of environmental samples: comparing gamma-absorption curves and spiked matrix-matched samples.
    McMahon CA; Fegan MF; Wong J; Long SC; Ryan TP; Colgan PA
    Appl Radiat Isot; 2004; 60(2-4):571-7. PubMed ID: 14987706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo determination of inhomogeneity effect on gamma-ray detection efficiency in soil samples.
    Celik N; Cevik U
    Radiat Prot Dosimetry; 2010 Sep; 141(2):178-82. PubMed ID: 20488974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo calculation of entire in situ gamma-ray spectra.
    Likar A; Vidmar T; Lipoglavsek M; Omahen G
    J Environ Radioact; 2004; 72(1-2):163-8. PubMed ID: 15162868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A semi-empirical approach for determination of low-energy gamma-emmiters in sediment samples with coaxial Ge-detectors.
    San Miguel EG; Perez-Moreno JP; Bolivar JP; García-Tenorio R
    Appl Radiat Isot; 2004; 61(2-3):361-6. PubMed ID: 15177372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimised geometry to calculate dose rate conversion coefficient for external exposure to photons.
    Askri B; Manai K; Trabelsi A; Baccari B
    Radiat Prot Dosimetry; 2008; 128(3):279-88. PubMed ID: 17959610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo determination of water concentration effect on gamma-ray detection efficiency in soil samples.
    Celik N; Cevik U
    Appl Radiat Isot; 2010 Jun; 68(6):1150-3. PubMed ID: 20133141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of the effective dose from natural radioactivity in soil using MCNP code.
    Krstic D; Nikezic D
    Appl Radiat Isot; 2010; 68(4-5):946-7. PubMed ID: 20045343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity measurement of a 176Lu sample using coincidence peaks and Monte Carlo simulations.
    Jutier C; Le Petit G
    Appl Radiat Isot; 2006; 64(10-11):1292-6. PubMed ID: 16603370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of coincidence summing corrections for X-ray peaks and for sum peaks with X-ray contributions.
    Arnold D; Sima O
    Appl Radiat Isot; 2006; 64(10-11):1297-302. PubMed ID: 16678431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical method for the calibration of in situ gamma ray spectroscopy systems.
    Dewey SC; Whetstone ZD; Kearfott KJ
    Health Phys; 2010 May; 98(5):657-71. PubMed ID: 20386196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gamma dose rate calculation and mapping of piemonte (North-West Italy) from gamma spectrometry soil data.
    Losana MC; Magnoni M; Bertino S; Procopio S; Facchinelli A; Sacchi E
    Radiat Prot Dosimetry; 2004; 111(4):419-22. PubMed ID: 15550714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Monte Carlo-based calibrations of HPGe detectors for in situ gamma-ray spectrometry.
    Boson J; Plamboeck AH; Ramebäck H; Agren G; Johansson L
    J Environ Radioact; 2009 Nov; 100(11):935-40. PubMed ID: 19604609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response calculation for standard ionization chambers in the APMP using EGS4 Monte Carlo code.
    Sato Y; Yunoki A; Hino Y; Yamada T
    Appl Radiat Isot; 2006; 64(10-11):1211-4. PubMed ID: 16556498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of photon attenuation coefficient, porosity and field capacity of soil by gamma-ray transmission for 60, 356 and 662 keV gamma rays.
    Demir D; Un A; Ozgül M; Sahin Y
    Appl Radiat Isot; 2008 Dec; 66(12):1834-7. PubMed ID: 18554919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method to determine 238U activity in environmental soil samples by using 63.3-keV-photopeak-gamma HPGe spectrometer.
    Huy NQ; Luyen TV
    Appl Radiat Isot; 2004 Dec; 61(6):1419-24. PubMed ID: 15388142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tenth value layers for 60Co gamma rays and for 4, 6, 10, 15, and 18 MV x rays in concrete for beams of cone angles between 0 degrees and 14 degrees calculated by Monte Carlo simulation.
    Jaradat AK; Biggs PJ
    Health Phys; 2007 May; 92(5):456-63. PubMed ID: 17429304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.