These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19897495)

  • 1. Interactive real-time mapping and catheter ablation of the cavotricuspid isthmus guided by magnetic resonance imaging in a porcine model.
    Hoffmann BA; Koops A; Rostock T; Müllerleile K; Steven D; Karst R; Steinke MU; Drewitz I; Lund G; Koops S; Adam G; Willems S
    Eur Heart J; 2010 Feb; 31(4):450-6. PubMed ID: 19897495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development, Preclinical Validation, and Clinical Translation of a Cardiac Magnetic Resonance - Electrophysiology System With Active Catheter Tracking for Ablation of Cardiac Arrhythmia.
    Chubb H; Harrison JL; Weiss S; Krueger S; Koken P; Bloch LØ; Kim WY; Stenzel GS; Wedan SR; Weisz JL; Gill J; Schaeffter T; O'Neill MD; Razavi RS
    JACC Clin Electrophysiol; 2017 Feb; 3(2):89-103. PubMed ID: 29759398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping-guided ablation of the cavotricuspid isthmus: a novel simplified approach to radiofrequency catheter ablation of isthmus-dependent atrial flutter.
    Maruyama M; Kobayashi Y; Miyauchi Y; Iwasaki YK; Morita N; Miyamoto S; Tadera T; Ino T; Atarashi H; Katoh T; Takano T
    Heart Rhythm; 2006 Jun; 3(6):665-73. PubMed ID: 16731467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Randomized comparison of anatomical versus voltage guided ablation of the cavotricuspid isthmus for atrial flutter.
    Hall B; Veerareddy S; Cheung P; Good E; Lemola K; Han J; Kamala T; Chugh A; Pelosi F; Morady F; Oral H
    Heart Rhythm; 2004 May; 1(1):43-8. PubMed ID: 15851115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time magnetic resonance-guided ablation of typical right atrial flutter using a combination of active catheter tracking and passive catheter visualization in man: initial results from a consecutive patient series.
    Hilbert S; Sommer P; Gutberlet M; Gaspar T; Foldyna B; Piorkowski C; Weiss S; Lloyd T; Schnackenburg B; Krueger S; Fleiter C; Paetsch I; Jahnke C; Hindricks G; Grothoff M
    Europace; 2016 Apr; 18(4):572-7. PubMed ID: 26316146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Randomized comparison of the continuous vs point-by-point radiofrequency ablation of the cavotricuspid isthmus for atrial flutter.
    Miyazaki S; Takahashi A; Kuwahara T; Kobori A; Yokoyama Y; Nozato T; Sato A; Aonuma K; Hirao K; Isobe M
    Circ J; 2007 Dec; 71(12):1922-6. PubMed ID: 18037747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue characterization of acute lesions during cardiac magnetic resonance-guided ablation of cavo-tricuspid isthmus-dependent atrial flutter: a feasibility study.
    Bijvoet GP; Nies HMJM; Holtackers RJ; Martens BM; Smink J; Linz D; Vernooy K; Wildberger JE; Nijveldt R; Chaldoupi SM; Mihl C
    Eur Heart J Cardiovasc Imaging; 2024 Apr; 25(5):635-644. PubMed ID: 38156446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diastolic isthmus length and 'vertical' isthmus angulation identify patients with difficult catheter ablation of typical atrial flutter: a pre-procedural MRI study.
    Kirchhof P; Ozgün M; Zellerhoff S; Mönnig G; Eckardt L; Wasmer K; Heindel W; Breithardt G; Maintz D
    Europace; 2009 Jan; 11(1):42-7. PubMed ID: 19029130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective randomized comparison of a steerable versus a non-steerable sheath for typical atrial flutter ablation.
    Matsuo S; Yamane T; Tokuda M; Date T; Hioki M; Narui R; Ito K; Yamashita S; Hama Y; Nakane T; Inada K; Shibayama K; Miyanaga S; Yoshida H; Miyazaki H; Abe K; Sugimoto K; Taniguchi I; Yoshimura M
    Europace; 2010 Mar; 12(3):402-9. PubMed ID: 20083483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of cavotricuspid isthmus morphology in CRYO versus radiofrequency ablation of typical atrial flutter.
    Saygi S; Bastani H; Drca N; Insulander P; Wredlert C; Schwieler J; Jensen-Urstad M
    Scand Cardiovasc J; 2017 Apr; 51(2):69-73. PubMed ID: 27826985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping and ablation of the pulmonary veins and cavo-tricuspid isthmus with a magnetic resonance imaging-compatible externally irrigated ablation catheter and integrated electrophysiology system.
    Ganesan AN; Selvanayagam JB; Mahajan R; Grover S; Nayyar S; Brooks AG; Finnie J; Sunnarborg D; Lloyd T; Chakrabarty A; Abed HS; Sanders P
    Circ Arrhythm Electrophysiol; 2012 Dec; 5(6):1136-42. PubMed ID: 23074322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility and efficacy of simultaneous pulmonary vein isolation and cavotricuspid isthmus ablation using cryotherapy.
    Dhillon PS; Domenichini G; Gonna H; Bastiaenen R; Norman M; Gallagher MM
    J Cardiovasc Electrophysiol; 2014 Jul; 25(7):714-8. PubMed ID: 24641352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a stepwise approach in cavotricuspid isthmus ablation for typical atrial flutter: A randomized study comparing three catheters.
    Rubín JM; Calvo D; Pérez D; Fidalgo A; de la Hera JM; Martínez L; Capín E; Arrizabalaga H; Carballeira L; García D; Morís C
    Pacing Clin Electrophysiol; 2017 Oct; 40(10):1052-1058. PubMed ID: 28846143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of bundle ablation for cavotricuspid isthmus-dependent atrial flutter: combination of the maximum voltage-guided ablation technique and high-density electro-anatomical mapping.
    Sato H; Yagi T; Namekawa A; Ishida A; Yamashina Y; Nakagawa T; Sakuramoto M; Sato E; Yambe T
    J Interv Card Electrophysiol; 2010 Jun; 28(1):39-44. PubMed ID: 20177759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute and long-term efficacy and safety of catheter cryoablation of the cavotricuspid isthmus for treatment of type 1 atrial flutter.
    Feld GK; Daubert JP; Weiss R; Miles WM; Pelkey W;
    Heart Rhythm; 2008 Jul; 5(7):1009-14. PubMed ID: 18598956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial clinical experience with a remote magnetic catheter navigation system for ablation of cavotricuspid isthmus-dependent right atrial flutter.
    Arya A; Kottkamp H; Piorkowski C; Bollmann A; Gerdes-Li JH; Riahi S; Esato M; Hindricks G
    Pacing Clin Electrophysiol; 2008 May; 31(5):597-603. PubMed ID: 18439175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The change in the tissue characterization detected by magnetic resonance imaging after radiofrequency ablation of isthmus-dependent atrial flutter.
    Yokokawa M; Tada H; Koyama K; Ino T; Naito S; Oshima S; Taniguchi K
    Int J Cardiol; 2011 Apr; 148(1):30-5. PubMed ID: 19903577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavotricuspid isthmus ablation guided by real-time magnetic resonance imaging.
    Piorkowski C; Grothoff M; Gaspar T; Eitel C; Sommer P; Huo Y; John S; Gutberlet M; Hindricks G
    Circ Arrhythm Electrophysiol; 2013 Feb; 6(1):e7-10. PubMed ID: 23424226
    [No Abstract]   [Full Text] [Related]  

  • 19. Randomized comparison of cavotricuspid isthmus ablation for atrial flutter using an open irrigation-tip versus a large-tip radiofrequency ablation catheter.
    Ilg KJ; Kühne M; Crawford T; Chugh A; Jongnarangsin K; Good E; Pelosi F; Bogun F; Morady F; Oral H
    J Cardiovasc Electrophysiol; 2011 Sep; 22(9):1007-12. PubMed ID: 21453368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Usefulness of the polarity in high-density wide range-filtered bipolar mapping to detect isthmus block during radiofrequency ablation of typical atrial flutter.
    Okumura Y; Watanabe I; Yamada T; Ohkubo K; Kawauchi K; Ashino S; Takagi Y; Sugimura H; Hashimoto K; Shindo A; Saito S
    J Interv Card Electrophysiol; 2006 Mar; 15(2):93-102. PubMed ID: 16755337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.