These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Double chromodomains cooperate to recognize the methylated histone H3 tail. Flanagan JF; Mi LZ; Chruszcz M; Cymborowski M; Clines KL; Kim Y; Minor W; Rastinejad F; Khorasanizadeh S Nature; 2005 Dec; 438(7071):1181-5. PubMed ID: 16372014 [TBL] [Abstract][Full Text] [Related]
7. Screening for inhibitors of low-affinity epigenetic peptide-protein interactions: an AlphaScreen-based assay for antagonists of methyl-lysine binding proteins. Wigle TJ; Herold JM; Senisterra GA; Vedadi M; Kireev DB; Arrowsmith CH; Frye SV; Janzen WP J Biomol Screen; 2010 Jan; 15(1):62-71. PubMed ID: 20008125 [TBL] [Abstract][Full Text] [Related]
8. Identification of a small-molecule ligand of the epigenetic reader protein Spindlin1 via a versatile screening platform. Wagner T; Greschik H; Burgahn T; Schmidtkunz K; Schott AK; McMillan J; Baranauskienė L; Xiong Y; Fedorov O; Jin J; Oppermann U; Matulis D; Schüle R; Jung M Nucleic Acids Res; 2016 May; 44(9):e88. PubMed ID: 26893353 [TBL] [Abstract][Full Text] [Related]
9. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Huang Y; Fang J; Bedford MT; Zhang Y; Xu RM Science; 2006 May; 312(5774):748-51. PubMed ID: 16601153 [TBL] [Abstract][Full Text] [Related]
10. Epigenetic regulation: methylation of histone and non-histone proteins. Lan F; Shi Y Sci China C Life Sci; 2009 Apr; 52(4):311-22. PubMed ID: 19381457 [TBL] [Abstract][Full Text] [Related]
12. Deciphering and engineering chromodomain-methyllysine peptide recognition. Hard R; Li N; He W; Ross B; Mo GCH; Peng Q; Stein RSL; Komives E; Wang Y; Zhang J; Wang W Sci Adv; 2018 Nov; 4(11):eaau1447. PubMed ID: 30417094 [TBL] [Abstract][Full Text] [Related]
14. Distinct mode of methylated lysine-4 of histone H3 recognition by tandem tudor-like domains of Spindlin1. Yang N; Wang W; Wang Y; Wang M; Zhao Q; Rao Z; Zhu B; Xu RM Proc Natl Acad Sci U S A; 2012 Oct; 109(44):17954-9. PubMed ID: 23077255 [TBL] [Abstract][Full Text] [Related]
15. Interactions between core histone marks and DNA methyltransferases predict DNA methylation patterns observed in human cells and tissues. Fu K; Bonora G; Pellegrini M Epigenetics; 2020 Mar; 15(3):272-282. PubMed ID: 31509087 [TBL] [Abstract][Full Text] [Related]
16. Mind the methyl: methyllysine binding proteins in epigenetic regulation. Wagner T; Robaa D; Sippl W; Jung M ChemMedChem; 2014 Mar; 9(3):466-83. PubMed ID: 24449612 [TBL] [Abstract][Full Text] [Related]
17. Tudor, MBT and chromo domains gauge the degree of lysine methylation. Kim J; Daniel J; Espejo A; Lake A; Krishna M; Xia L; Zhang Y; Bedford MT EMBO Rep; 2006 Apr; 7(4):397-403. PubMed ID: 16415788 [TBL] [Abstract][Full Text] [Related]
19. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Jacobs SA; Khorasanizadeh S Science; 2002 Mar; 295(5562):2080-3. PubMed ID: 11859155 [TBL] [Abstract][Full Text] [Related]
20. Recent advances in the development of peptide-based inhibitors targeting epigenetic readers of histone lysine acetylation and methylation marks. Liu S; Li X; Li X; Li XD Curr Opin Chem Biol; 2023 Aug; 75():102334. PubMed ID: 37263048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]