These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 19897654)
1. The aromatic ring of phenylalanine 334 is essential for oligomerization of Vibrio vulnificus hemolysin. Kashimoto T; Ueno S; Koga T; Fukudome S; Ehara H; Komai M; Sugiyama H; Susa N J Bacteriol; 2010 Jan; 192(2):568-74. PubMed ID: 19897654 [TBL] [Abstract][Full Text] [Related]
2. Both polarity and aromatic ring in the side chain of tryptophan 246 are involved in binding activity of Vibrio vulnificus hemolysin to target cells. Kashimoto T; Akita T; Kado T; Yamazaki K; Ueno S Microb Pathog; 2017 Aug; 109():71-77. PubMed ID: 28546115 [TBL] [Abstract][Full Text] [Related]
3. Oligomerization is essential for apoptotic activity of Vibrio vulnificus hemolysin. Kashimoto T; Ueno S; Ehara H; Fukudome S; Komai M; Susa N J Vet Med Sci; 2009 Oct; 71(10):1403-6. PubMed ID: 19887751 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of binding of Vibrio vulnificus hemolysin (VVH) by MβCD. Sugiyama H; Kashimoto T; Ueno S; Susa N J Vet Med Sci; 2013; 75(5):649-52. PubMed ID: 23238452 [TBL] [Abstract][Full Text] [Related]
6. Glycan specificity of the Vibrio vulnificus hemolysin lectin outlines evolutionary history of membrane targeting by a toxin family. Kaus K; Lary JW; Cole JL; Olson R J Mol Biol; 2014 Jul; 426(15):2800-12. PubMed ID: 24862282 [TBL] [Abstract][Full Text] [Related]
7. Relationship between localization on cellular membranes and cytotoxicity of Vibrio vulnificus hemolysin. Sugiyama H; Kashimoto T; Ueno S; Ehara H; Kodama T; Iida T; Susa N PLoS One; 2011; 6(10):e26018. PubMed ID: 22028805 [TBL] [Abstract][Full Text] [Related]
8. Yuan Y; Feng Z; Wang J Front Immunol; 2020; 11():599439. PubMed ID: 33193453 [TBL] [Abstract][Full Text] [Related]
9. Regulation systems of protease and hemolysin production in Vibrio vulnificus. Elgaml A; Miyoshi SI Microbiol Immunol; 2017 Jan; 61(1):1-11. PubMed ID: 28111826 [TBL] [Abstract][Full Text] [Related]
10. The β-prism lectin domain of Vibrio cholerae hemolysin promotes self-assembly of the β-pore-forming toxin by a carbohydrate-independent mechanism. Ganguly S; Mukherjee A; Mazumdar B; Ghosh AN; Banerjee KK J Biol Chem; 2014 Feb; 289(7):4001-8. PubMed ID: 24356964 [TBL] [Abstract][Full Text] [Related]
11. Inactivation of Vibrio vulnificus hemolysin through mutation of the N- or C-terminus of the lectin-like domain. Miyoshi S; Abe Y; Senoh M; Mizuno T; Maehara Y; Nakao H Toxicon; 2011 May; 57(6):904-8. PubMed ID: 21426913 [TBL] [Abstract][Full Text] [Related]
12. Promoter analysis and regulatory characteristics of vvhBA encoding cytolytic hemolysin of Vibrio vulnificus. Choi HK; Park NY; Kim DI; Chung HJ; Ryu S; Choi SH J Biol Chem; 2002 Dec; 277(49):47292-9. PubMed ID: 12356775 [TBL] [Abstract][Full Text] [Related]
13. Oligomerization and hemolytic properties of the C-terminal domain of pyolysin, a cholesterol-dependent cytolysin. Pokrajac L; Harris JR; Sarraf N; Palmer M Biochem Cell Biol; 2013 Apr; 91(2):59-66. PubMed ID: 23527633 [TBL] [Abstract][Full Text] [Related]
14. Multiple Pleomorphic Tetramers of Thermostable Direct Hemolysin from Grimontia hollisae in Exerting Hemolysis and Membrane Binding. Wang YK; Huang SC; Chang CY; Huang WT; Liao MJ; Yip BS; Chou FP; Li TT; Wu TK Sci Rep; 2019 Jul; 9(1):9833. PubMed ID: 31285470 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Outer Membrane Vesicles Produced by Vibrio vulnificus. Higashiyama R; Kanda Y; Shimohata T; Ishida K; Fukushima S; Yamazaki K; Uebanso T; Mawatari K; Kashimoto T; Takahashi A J Med Invest; 2024; 71(1.2):102-112. PubMed ID: 38735705 [TBL] [Abstract][Full Text] [Related]
16. IL-21 Enhances the Immune Protection Induced by the Vibrio vulnificus Hemolysin A Protein. Sun KN; Huang F; Wang MY; Wu J; Hu CJ; Liu XF Inflammation; 2022 Aug; 45(4):1496-1506. PubMed ID: 35129769 [TBL] [Abstract][Full Text] [Related]
17. Dominant negative mutants of Bacillus thuringiensis Cry1Ab toxin function as anti-toxins: demonstration of the role of oligomerization in toxicity. Rodríguez-Almazán C; Zavala LE; Muñoz-Garay C; Jiménez-Juárez N; Pacheco S; Masson L; Soberón M; Bravo A PLoS One; 2009; 4(5):e5545. PubMed ID: 19440244 [TBL] [Abstract][Full Text] [Related]
18. Effect of active-site aromatic residues Tyr or Phe on activity and stability of glucose 6-phosphate dehydrogenase from psychrophilic Arctic bacterium Sphingomonas sp. Tran KN; Jang SH; Lee C Biochim Biophys Acta Proteins Proteom; 2021 Jan; 1869(1):140543. PubMed ID: 32966894 [TBL] [Abstract][Full Text] [Related]
19. Contribution of individual tryptophan residues to the structure and activity of theta-toxin (perfringolysin O), a cholesterol-binding cytolysin. Sekino-Suzuki N; Nakamura M; Mitsui KI; Ohno-Iwashita Y Eur J Biochem; 1996 Nov; 241(3):941-7. PubMed ID: 8944786 [TBL] [Abstract][Full Text] [Related]
20. HlyC, the internal protein acyltransferase that activates hemolysin toxin: roles of various conserved residues in enzymatic activity as probed by site-directed mutagenesis. Trent MS; Worsham LM; Ernst-Fonberg ML Biochemistry; 1999 Jul; 38(29):9541-8. PubMed ID: 10413532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]