These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19898103)

  • 1. Effects of burn injury on markers of hypermetabolism in rats.
    Izamis ML; Uygun K; Uygun B; Yarmush ML; Berthiaume F
    J Burn Care Res; 2009; 30(6):993-1001. PubMed ID: 19898103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heart rate and metabolic response to burn injury in humans.
    Giantin V; Ceccon A; Enzi G; Sergi G; Perini P; Bussolotto M; Schiavon M; Casadei A; Mazzoleni F; Sartori L
    JPEN J Parenter Enteral Nutr; 1995; 19(1):55-62. PubMed ID: 7658602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wound endotoxin is not a principal mediator of postburn hypermetabolism in rats.
    Aulick LH; Wroczynski FA; Madan E; Mason AD
    J Trauma; 1990 Apr; 30(4):457-62. PubMed ID: 2109095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guinea pigs with large burns are consistently hypermetabolic without an associated increment in rectal temperature.
    Wallace BH; Graves DB; Caldwell FT
    J Burn Care Rehabil; 1993; 14(6):670-5. PubMed ID: 8300703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rabbit model for metabolic studies after burn injury.
    Hu RH; Yu YM; Costa D; Young VR; Ryan CM; Burke JF; Tompkins RG
    J Surg Res; 1998 Mar; 75(2):153-60. PubMed ID: 9655088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of early feeding on the postburn hypermetabolic response in rats.
    Wood RH; Caldwell FT; Wallace BH
    J Trauma; 1990 Dec; 30(12 Suppl):S24-30. PubMed ID: 2254986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High dose vitamin C counteracts the negative interstitial fluid hydrostatic pressure and early edema generation in thermally injured rats.
    Tanaka H; Lund T; Wiig H; Reed RK; Yukioka T; Matsuda H; Shimazaki S
    Burns; 1999 Nov; 25(7):569-74. PubMed ID: 10563680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma.
    Ogunbileje JO; Porter C; Herndon DN; Chao T; Abdelrahman DR; Papadimitriou A; Chondronikola M; Zimmers TA; Reidy PT; Rasmussen BB; Sidossis LS
    Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E436-48. PubMed ID: 27382037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The relationship between postburn enterogenic hypermetabolism and decontamination of intestine].
    Peng X; Wang S; Tao L; Wang F; Wang P; You Z
    Zhonghua Shao Shang Za Zhi; 2001 Aug; 17(4):207-9. PubMed ID: 11876940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of early feeding on postburn hypermetabolism.
    Wood RH; Caldwell FT; Bowser-Wallace BH
    J Trauma; 1988 Feb; 28(2):177-83. PubMed ID: 3126304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between heat production, heat loss, and body temperature for rats with burn injuries between 26% and 63% of the body surface area.
    Caldwell FT; Graves DB; Wallace BH
    J Burn Care Rehabil; 1993; 14(4):420-6. PubMed ID: 8408165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent morphological and biochemical changes following cutaneous thermal burn injury and their modulation by copper nicotinate complex: an animal model.
    Nassar MA; Eldien HM; Tawab HS; Saleem TH; Omar HM; Nassar AY; Hussein MR
    Ultrastruct Pathol; 2012 Oct; 36(5):343-55. PubMed ID: 23025652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromuscular dysfunction in burns and its relationship to burn size, hypermetabolism, and immunosuppression.
    Tomera JF; Martyn J; Hoaglin DC
    J Trauma; 1988 Oct; 28(10):1499-504. PubMed ID: 3172313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn.
    Jeschke MG; Finnerty CC; Suman OE; Kulp G; Mlcak RP; Herndon DN
    Ann Surg; 2007 Sep; 246(3):351-60; discussion 360-2. PubMed ID: 17717439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of partial burn excision and closure on postburn oxygen consumption.
    Demling RH; Lalonde C
    Surgery; 1988 Nov; 104(5):846-52. PubMed ID: 3187900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sequential early burn wound excision and closure on postburn oxygen consumption.
    Demling RH; Frye E; Read T
    Crit Care Med; 1991 Jul; 19(7):861-6. PubMed ID: 2055072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vagotomy modifies but does not eliminate the increase in body temperature following burn injury in rats.
    Caldwell FT; Graves DB; Wallace BH
    Burns; 1999 Jun; 25(4):295-305. PubMed ID: 10431977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible role of CRF peptides in burn-induced hypermetabolism.
    Chance WT; Dayal R; Friend LA; Sheriff S
    Life Sci; 2006 Jan; 78(7):694-703. PubMed ID: 16125201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse models in burns research: Characterisation of the hypermetabolic response to burn injury.
    Hew JJ; Parungao RJ; Shi H; Tsai KH; Kim S; Ma D; Malcolm J; Li Z; Maitz PK; Wang Y
    Burns; 2020 May; 46(3):663-674. PubMed ID: 31606314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Protective effect of melatonin against renal dysfunction following severe burn in rats].
    Han XH; Wen GQ; Xu L
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2007 Dec; 19(12):721-3. PubMed ID: 18093427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.