These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19899135)

  • 1. Per-channel basis normalization methods for flow cytometry data.
    Hahne F; Khodabakhshi AH; Bashashati A; Wong CJ; Gascoyne RD; Weng AP; Seyfert-Margolis V; Bourcier K; Asare A; Lumley T; Gentleman R; Brinkman RR
    Cytometry A; 2010 Feb; 77(2):121-31. PubMed ID: 19899135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput automated analysis of big flow cytometry data.
    Rahim A; Meskas J; Drissler S; Yue A; Lorenc A; Laing A; Saran N; White J; Abeler-Dörner L; Hayday A; Brinkman RR
    Methods; 2018 Feb; 134-135():164-176. PubMed ID: 29287915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BayesFlow: latent modeling of flow cytometry cell populations.
    Johnsson K; Wallin J; Fontes M
    BMC Bioinformatics; 2016 Jan; 17():25. PubMed ID: 26755197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput flow cytometry data normalization for clinical trials.
    Finak G; Jiang W; Krouse K; Wei C; Sanz I; Phippard D; Asare A; De Rosa SC; Self S; Gottardo R
    Cytometry A; 2014 Mar; 85(3):277-86. PubMed ID: 24382714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing transformations for automated, high throughput analysis of flow cytometry data.
    Finak G; Perez JM; Weng A; Gottardo R
    BMC Bioinformatics; 2010 Nov; 11():546. PubMed ID: 21050468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CytoNorm: A Normalization Algorithm for Cytometry Data.
    Van Gassen S; Gaudilliere B; Angst MS; Saeys Y; Aghaeepour N
    Cytometry A; 2020 Mar; 97(3):268-278. PubMed ID: 31633883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QUAliFiER: an automated pipeline for quality assessment of gated flow cytometry data.
    Finak G; Jiang W; Pardo J; Asare A; Gottardo R
    BMC Bioinformatics; 2012 Sep; 13():252. PubMed ID: 23020243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational prediction of manually gated rare cells in flow cytometry data.
    Qiu P
    Cytometry A; 2015 Jul; 87(7):594-602. PubMed ID: 25755118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data quality assessment of ungated flow cytometry data in high throughput experiments.
    Le Meur N; Rossini A; Gasparetto M; Smith C; Brinkman RR; Gentleman R
    Cytometry A; 2007 Jun; 71(6):393-403. PubMed ID: 17366638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation.
    Mosmann TR; Naim I; Rebhahn J; Datta S; Cavenaugh JS; Weaver JM; Sharma G
    Cytometry A; 2014 May; 85(5):422-33. PubMed ID: 24532172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data analysis as a source of variability of the HLA-peptide multimer assay: from manual gating to automated recognition of cell clusters.
    Gouttefangeas C; Chan C; Attig S; Køllgaard TT; Rammensee HG; Stevanović S; Wernet D; thor Straten P; Welters MJ; Ottensmeier C; van der Burg SH; Britten CM
    Cancer Immunol Immunother; 2015 May; 64(5):585-98. PubMed ID: 25854580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SwiftReg cluster registration automatically reduces flow cytometry data variability including batch effects.
    Rebhahn JA; Quataert SA; Sharma G; Mosmann TR
    Commun Biol; 2020 May; 3(1):218. PubMed ID: 32382076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 5-color flow cytometric method for extended 8-part leukocyte differential.
    Guy J; Wagner-Ballon O; Pages O; Bailly F; Borgeot J; Béné MC; Maynadié M
    Cytometry B Clin Cytom; 2017 Nov; 92(6):498-507. PubMed ID: 28321976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow Cytometry Data Preparation Guidelines for Improved Automated Phenotypic Analysis.
    Jimenez-Carretero D; Ligos JM; Martínez-López M; Sancho D; Montoya MC
    J Immunol; 2018 May; 200(10):3319-3331. PubMed ID: 29735643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and purification of classical Hodgkin cells from lymph nodes by flow cytometry and flow cytometric cell sorting.
    Fromm JR; Kussick SJ; Wood BL
    Am J Clin Pathol; 2006 Nov; 126(5):764-80. PubMed ID: 17050074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid cell population identification in flow cytometry data.
    Aghaeepour N; Nikolic R; Hoos HH; Brinkman RR
    Cytometry A; 2011 Jan; 79(1):6-13. PubMed ID: 21182178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow immunophenotyping of benign lymph nodes sampled by FNA: Representative with diagnostic pitfalls.
    Scott GD; Lau HD; Kurzer JH; Kong CS; Gratzinger DA
    Cancer Cytopathol; 2018 Sep; 126(9):797-808. PubMed ID: 30194715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
    Weber LM; Robinson MD
    Cytometry A; 2016 Dec; 89(12):1084-1096. PubMed ID: 27992111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical assessment of automated flow cytometry data analysis techniques.
    Aghaeepour N; Finak G; ; ; Hoos H; Mosmann TR; Brinkman R; Gottardo R; Scheuermann RH
    Nat Methods; 2013 Mar; 10(3):228-38. PubMed ID: 23396282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-set Pre-processing of Multicolor Flow Cytometry Data.
    Folcarelli R; Tinnevelt GH; Hilvering B; Wouters K; van Staveren S; Postma GJ; Vrisekoop N; Buydens LMC; Koenderman L; Jansen JJ
    Sci Rep; 2020 Jun; 10(1):9716. PubMed ID: 32546713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.