BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 19899157)

  • 1. Molecular and supramolecular chirality in gemini-tartrate amphiphiles studied by electronic and vibrational circular dichroisms.
    Brizard A; Berthier D; Aimé C; Buffeteau T; Cavagnat D; Ducasse L; Huc I; Oda R
    Chirality; 2009; 21 Suppl 1():E153-62. PubMed ID: 19899157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counterion, temperature, and time modulation of nanometric chiral ribbons from gemini-tartrate amphiphiles.
    Brizard A; Aimé C; Labrot T; Huc I; Berthier D; Artzner F; Desbat B; Oda R
    J Am Chem Soc; 2007 Mar; 129(12):3754-62. PubMed ID: 17328548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactic acid in solution: investigations of lactic acid self-aggregation and hydrogen bonding interactions with water and methanol using vibrational absorption and vibrational circular dichroism spectroscopies.
    Losada M; Tran H; Xu Y
    J Chem Phys; 2008 Jan; 128(1):014508. PubMed ID: 18190205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C3-symmetrical self-assembled structures investigated by vibrational circular dichroism.
    Smulders MM; Buffeteau T; Cavagnat D; Wolffs M; Schenning AP; Meijer EW
    Chirality; 2008 Sep; 20(9):1016-22. PubMed ID: 18473340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular structure of self-assembled chiral nanoribbons and nanotubules revealed in the hydrated state.
    Oda R; Artzner F; Laguerre M; Huc I
    J Am Chem Soc; 2008 Nov; 130(44):14705-12. PubMed ID: 18847195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of guanosine-quartet assemblies by vibrational and electronic circular dichroism spectroscopy, a novel approach for studying supramolecular entities.
    Setnicka V; Urbanová M; Volka K; Nampally S; Lehn JM
    Chemistry; 2006 Nov; 12(34):8735-43. PubMed ID: 16983706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chirality of camphor derivatives by density functional theory.
    Morita HE; Kodama TS; Tanaka T
    Chirality; 2006 Nov; 18(10):783-9. PubMed ID: 16906492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chirality transfer through hydrogen-bonding: experimental and ab initio analyses of vibrational circular dichroism spectra of methyl lactate in water.
    Losada M; Xu Y
    Phys Chem Chem Phys; 2007 Jun; 9(24):3127-35. PubMed ID: 17612736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of enantiomeric excess in samples of chiral molecules using fourier transform vibrational circular dichroism spectroscopy: simulation of real-time reaction monitoring.
    Guo C; Shah RD; Dukor RK; Cao X; Freedman TB; Nafie LA
    Anal Chem; 2004 Dec; 76(23):6956-66. PubMed ID: 15571347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From chiral counterions to twisted membranes.
    Berthier D; Buffeteau T; Léger JM; Oda R; Huc I
    J Am Chem Soc; 2002 Nov; 124(45):13486-94. PubMed ID: 12418902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and chiroptical properties of cryptophanes having C1-symmetry.
    Cavagnat D; Buffeteau T; Brotin T
    J Org Chem; 2008 Jan; 73(1):66-75. PubMed ID: 18052292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matrix isolation-vibrational circular dichroism spectroscopy of 3-butyn-2-ol and its binary aggregates.
    Merten C; Xu Y
    Chemphyschem; 2013 Jan; 14(1):213-9. PubMed ID: 23109050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of configurational and conformational properties of naringenin by vibrational circular dichroism.
    Abbate S; Burgi LF; Castiglioni E; Lebon F; Longhi G; Toscano E; Caccamese S
    Chirality; 2009 Apr; 21(4):436-41. PubMed ID: 18655173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the absolute configurations at stereogenic centers in the presence of axial chirality.
    Polavarapu PL; Jeirath N; Kurtán T; Pescitelli G; Krohn K
    Chirality; 2009; 21 Suppl 1():E202-7. PubMed ID: 19899152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational and electronic optical activity of the chiral disulphide group: implications for disulphide bridge conformation.
    Bednárová L; Bour P; Malon P
    Chirality; 2010 May; 22(5):514-26. PubMed ID: 19725095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational studies on chiral rhodium complexes by ECD and VCD spectroscopy.
    Szilvágyi G; Majer Z; Vass E; Hollósi M
    Chirality; 2011 Apr; 23(4):294-9. PubMed ID: 20928899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of complex formation on vibrational circular dichroism spectra.
    Nicu VP; Neugebauer J; Baerends EJ
    J Phys Chem A; 2008 Jul; 112(30):6978-91. PubMed ID: 18610942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational sensitivity of chiroptical spectroscopic methods: 6,6'-dibromo-1,1'-bi-2-naphthol.
    Polavarapu PL; Jeirath N; Walia S
    J Phys Chem A; 2009 May; 113(18):5423-31. PubMed ID: 19366240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictions of secondary structure using statistical analyses of electronic and vibrational circular dichroism and Fourier transform infrared spectra of proteins in H2O.
    Baumruk V; Pancoska P; Keiderling TA
    J Mol Biol; 1996 Jun; 259(4):774-91. PubMed ID: 8683582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic studies on the chiral recognition of polysaccharide-based chiral stationary phases using liquid chromatography and vibrational circular dichroism: reversal of elution order of N-substituted alpha-methyl phenylalanine esters.
    Ma S; Shen S; Lee H; Eriksson M; Zeng X; Xu J; Fandrick K; Yee N; Senanayake C; Grinberg N
    J Chromatogr A; 2009 May; 1216(18):3784-93. PubMed ID: 19278683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.