These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19899804)

  • 21. Modulation of Bordetella pertussis infection with monoclonal antibodies to pertussis toxin.
    Halperin SA; Issekutz TB; Kasina A
    J Infect Dis; 1991 Feb; 163(2):355-61. PubMed ID: 1703192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural relationship between the S1 and S4 subunits of pertussis toxin.
    Sato H; Sato Y
    FEMS Microbiol Lett; 1994 Jan; 115(1):63-9. PubMed ID: 7510256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epitope specificity of three anti-pertussis toxin monoclonal antibodies with dissimilar effects in assays of toxin neutralizing activity.
    Halperin SA; Issekutz TB; Kasina A
    Mol Immunol; 1991 Mar; 28(3):247-50. PubMed ID: 1708105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell Attachment Domains of the Porcine Epidemic Diarrhea Virus Spike Protein Are Key Targets of Neutralizing Antibodies.
    Li C; Li W; Lucio de Esesarte E; Guo H; van den Elzen P; Aarts E; van den Born E; Rottier PJM; Bosch BJ
    J Virol; 2017 Jun; 91(12):. PubMed ID: 28381581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic exchange of the S2 and S3 subunits in pertussis toxin.
    Raze D; Veithen A; Sato H; Antoine R; Menozzi FD; Locht C
    Mol Microbiol; 2006 Jun; 60(5):1241-50. PubMed ID: 16689799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human T cell clones define S1 subunit as the most immunogenic moiety of pertussis toxin and determine its epitope map.
    De Magistris MT; Romano M; Bartoloni A; Rappuoli R; Tagliabue A
    J Exp Med; 1989 May; 169(5):1519-32. PubMed ID: 2469760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of different detoxification procedures on the residual pertussis toxin activities in vaccines.
    Yuen CT; Asokanathan C; Cook S; Lin N; Xing D
    Vaccine; 2016 Apr; 34(18):2129-34. PubMed ID: 26973066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of peptides that mimic the pertussis toxin binding site on bovine fetuin.
    Bogdan JA; Yuan W; Long-Rowe KO; Sarwar J; Brucker EA; Blake MS
    Appl Environ Microbiol; 2003 Oct; 69(10):6272-9. PubMed ID: 14532091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-specific alterations in the B oligomer that affect receptor-binding activities and mitogenicity of pertussis toxin.
    Lobet Y; Feron C; Dequesne G; Simoen E; Hauser P; Locht C
    J Exp Med; 1993 Jan; 177(1):79-87. PubMed ID: 8418210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pertussis toxin utilizes proximal components of the T-cell receptor complex to initiate signal transduction events in T cells.
    Schneider OD; Weiss AA; Miller WE
    Infect Immun; 2007 Aug; 75(8):4040-9. PubMed ID: 17562776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of formaldehyde, hydrogen peroxide and genetic detoxification of pertussis toxin on epitope recognition by murine monoclonal antibodies.
    Ibsen PH
    Vaccine; 1996 Apr; 14(5):359-68. PubMed ID: 8735545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fine Epitope Mapping of Two Antibodies Neutralizing the Bordetella Adenylate Cyclase Toxin.
    Wang X; Stapleton JA; Klesmith JR; Hewlett EL; Whitehead TA; Maynard JA
    Biochemistry; 2017 Mar; 56(9):1324-1336. PubMed ID: 28177609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetically detoxified pertussis toxin (PT-9K/129G): implications for immunization and vaccines.
    Seubert A; D'Oro U; Scarselli M; Pizza M
    Expert Rev Vaccines; 2014 Oct; 13(10):1191-204. PubMed ID: 25183193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adenylate cyclase toxin-mediated delivery of the S1 subunit of pertussis toxin into mammalian cells.
    Iwaki M; Konda T
    Pathog Dis; 2016 Feb; 74(1):ftv110. PubMed ID: 26607401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evading the proteasome: absence of lysine residues contributes to pertussis toxin activity by evasion of proteasome degradation.
    Worthington ZE; Carbonetti NH
    Infect Immun; 2007 Jun; 75(6):2946-53. PubMed ID: 17420233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pertussis toxin analog with reduced enzymatic and biological activities is a protective immunogen.
    Kimura A; Mountzouros KT; Schad PA; Cieplak W; Cowell JL
    Infect Immun; 1990 Oct; 58(10):3337-47. PubMed ID: 2119344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of a pertussis toxin S1 fragment by inducible promoters in oral Streptococcus and the induction of immune responses during oral colonization in mice.
    Mallaley PP; Halperin SA; Morris A; MacMillan A; Lee SF
    Can J Microbiol; 2006 May; 52(5):436-44. PubMed ID: 16699568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differences in epitope-specific antibodies to pertussis toxin after infection and acellular vaccinations.
    Knuutila A; Dalby T; Barkoff AM; Jørgensen CS; Fuursted K; Mertsola J; Markey K; He Q
    Clin Transl Immunology; 2020; 9(8):e1161. PubMed ID: 32765879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutralizing antibodies and immunoprotection against pertussis and tetanus obtained by use of a recombinant pertussis toxin-tetanus toxin fusion protein.
    Boucher P; Sato H; Sato Y; Locht C
    Infect Immun; 1994 Feb; 62(2):449-56. PubMed ID: 7507893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monoclonal Antibody 2C6 Targets a Cross-Clade Conformational Epitope in gp41 with Highly Active Antibody-Dependent Cell Cytotoxicity.
    Sojar H; Baron S; Sullivan JT; Garrett M; van Haaren MM; Hoffman J; Overbaugh J; Doranz BJ; Hicar MD
    J Virol; 2019 Sep; 93(17):. PubMed ID: 31217246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.