These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19900689)

  • 1. Chloramination of organophosphorus pesticides found in drinking water sources.
    Duirk SE; Desetto LM; Davis GM; Lindell C; Cornelison CT
    Water Res; 2010 Feb; 44(3):761-8. PubMed ID: 19900689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of organophosphorus pesticides in the presence of aqueous chlorine: kinetics, pathways, and structure-activity relationships.
    Duirk SE; Desetto LM; Davis GM
    Environ Sci Technol; 2009 Apr; 43(7):2335-40. PubMed ID: 19452883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorination of organophosphorus pesticides in natural waters.
    Acero JL; Benítez FJ; Real FJ; González M
    J Hazard Mater; 2008 May; 153(1-2):320-8. PubMed ID: 17904287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative importance of nitrite oxidation by hypochlorous acid under chloramination conditions.
    Wahman DG; Speitel GE
    Environ Sci Technol; 2012 Jun; 46(11):6056-64. PubMed ID: 22571335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of methiocarb by monochloramine in water treatment: kinetics and pathways.
    Qiang Z; Tian F; Liu W; Liu C
    Water Res; 2014 Mar; 50():237-44. PubMed ID: 24380738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triclosan reactivity in chloraminated waters.
    Greyshock AE; Vikesland PJ
    Environ Sci Technol; 2006 Apr; 40(8):2615-22. PubMed ID: 16683600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive screening study of pesticide degradation via oxidation and hydrolysis.
    Chamberlain E; Shi H; Wang T; Ma Y; Fulmer A; Adams C
    J Agric Food Chem; 2012 Jan; 60(1):354-63. PubMed ID: 22141915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation.
    Le Roux J; Gallard H; Croué JP
    Water Res; 2011 May; 45(10):3164-74. PubMed ID: 21496861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling monochloramine loss in the presence of natural organic matter.
    Duirk SE; Gombert B; Croué JP; Valentine RL
    Water Res; 2005 Sep; 39(14):3418-31. PubMed ID: 16045963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of chlorpyrifos in aqueous chlorine solutions: pathways, kinetics, and modeling.
    Duirk SE; Collette TW
    Environ Sci Technol; 2006 Jan; 40(2):546-51. PubMed ID: 16468401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative removal and kinetics of fipronil in various oxidation systems for drinking water treatment.
    Chamberlain EF; Wang C; Shi H; Adams CD; Ma Y
    J Agric Food Chem; 2010 Jun; 58(11):6895-9. PubMed ID: 20455564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The presence of dialkylphosphates in fresh fruit juices: implication for organophosphorus pesticide exposure and risk assessments.
    Lu C; Bravo R; Caltabiano LM; Irish RM; Weerasekera G; Barr DB
    J Toxicol Environ Health A; 2005 Feb; 68(3):209-27. PubMed ID: 15762180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of some parameters on the formation of chloroform during chloramination of aqueous solutions of resorcinol.
    Cimetiere N; Dossier-Berne F; De Laat J
    Water Res; 2010 Aug; 44(15):4497-504. PubMed ID: 20591462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The degradation of chlorpyrifos and diazinon in aqueous solution by ultrasonic irradiation: effect of parameters and degradation pathway.
    Zhang Y; Hou Y; Chen F; Xiao Z; Zhang J; Hu X
    Chemosphere; 2011 Feb; 82(8):1109-15. PubMed ID: 21176942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Kinetics of monochloramine decay in disinfection of drinking water].
    Liu SG; Zhu ZL; Han C; Qiu YL; Zhao JF
    Huan Jing Ke Xue; 2009 Sep; 30(9):2543-9. PubMed ID: 19927801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stability of four organophosphorus insecticides in stored cucumber samples is affected by additives.
    Bian Y; Wang Y; Liu F; Li X; Wang B
    Food Chem; 2020 Nov; 331():127352. PubMed ID: 32652343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of NADH by chloramines and chloramides and its activation by iodide and by tertiary amines.
    Prütz WA; Kissner R; Koppenol WH
    Arch Biochem Biophys; 2001 Sep; 393(2):297-307. PubMed ID: 11556817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Albumin binding as a potential biomarker of exposure to moderately low levels of organophosphorus pesticides.
    Tarhoni MH; Lister T; Ray DE; Carter WG
    Biomarkers; 2008 Jun; 13(4):343-63. PubMed ID: 18484351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione S-transferase conjugation of organophosphorus pesticides yields S-phospho-, S-aryl-, and S-alkylglutathione derivatives.
    Fujioka K; Casida JE
    Chem Res Toxicol; 2007 Aug; 20(8):1211-7. PubMed ID: 17645302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of organophosphorus pesticide induced by oxygen plasma: effects of operating parameters and reaction mechanisms.
    Bai Y; Chen J; Yang Y; Guo L; Zhang C
    Chemosphere; 2010 Sep; 81(3):408-14. PubMed ID: 20655087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.