BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19901081)

  • 41. Two levels of protection for the B cell genome during somatic hypermutation.
    Liu M; Duke JL; Richter DJ; Vinuesa CG; Goodnow CC; Kleinstein SH; Schatz DG
    Nature; 2008 Feb; 451(7180):841-5. PubMed ID: 18273020
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of murine B cell lines that undergo somatic hypermutation focused to A:T and G:C residues.
    Bhattacharya P; Grigera F; Rogozin IB; McCarty T; Morse HC; Kenter AL
    Eur J Immunol; 2008 Jan; 38(1):227-39. PubMed ID: 18081040
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Why do B cells mutate their immunoglobulin receptors?
    Longo NS; Lipsky PE
    Trends Immunol; 2006 Aug; 27(8):374-80. PubMed ID: 16809065
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Discovery of activation-induced cytidine deaminase, the engraver of antibody memory.
    Muramatsu M; Nagaoka H; Shinkura R; Begum NA; Honjo T
    Adv Immunol; 2007; 94():1-36. PubMed ID: 17560270
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid cell division contributes to efficient induction of A/T mutations during Ig gene hypermutation.
    Kano C; Ouchida R; Kokubo T; Wang JY
    Mol Immunol; 2011 Sep; 48(15-16):1993-9. PubMed ID: 21724261
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Somatic hypermutation maintains antibody thermodynamic stability during affinity maturation.
    Wang F; Sen S; Zhang Y; Ahmad I; Zhu X; Wilson IA; Smider VV; Magliery TJ; Schultz PG
    Proc Natl Acad Sci U S A; 2013 Mar; 110(11):4261-6. PubMed ID: 23440204
    [TBL] [Abstract][Full Text] [Related]  

  • 47. REV7 is required for processing AID initiated DNA lesions in activated B cells.
    Yang D; Sun Y; Chen J; Zhang Y; Fan S; Huang M; Xie X; Cai Y; Shang Y; Gui T; Sun L; Hu J; Dong J; Yeap LS; Wang X; Xiao W; Meng FL
    Nat Commun; 2020 Jun; 11(1):2812. PubMed ID: 32499490
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting.
    Rada C; Ehrenstein MR; Neuberger MS; Milstein C
    Immunity; 1998 Jul; 9(1):135-41. PubMed ID: 9697843
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Somatic hypermutation does not require Rad54 and Rad54B-mediated homologous recombination.
    Bross L; Wesoly J; Buerstedde JM; Kanaar R; Jacobs H
    Eur J Immunol; 2003 Feb; 33(2):352-7. PubMed ID: 12548566
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination.
    Martomo SA; Yang WW; Gearhart PJ
    J Exp Med; 2004 Jul; 200(1):61-8. PubMed ID: 15238605
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Beyond Hot Spots: Biases in Antibody Somatic Hypermutation and Implications for Vaccine Design.
    Schramm CA; Douek DC
    Front Immunol; 2018; 9():1876. PubMed ID: 30154794
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A role for PCNA ubiquitination in immunoglobulin hypermutation.
    Arakawa H; Moldovan GL; Saribasak H; Saribasak NN; Jentsch S; Buerstedde JM
    PLoS Biol; 2006 Nov; 4(11):e366. PubMed ID: 17105346
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Competitive repair pathways in immunoglobulin gene hypermutation.
    Reynaud CA; Delbos F; Faili A; Guéranger Q; Aoufouchi S; Weill JC
    Philos Trans R Soc Lond B Biol Sci; 2009 Mar; 364(1517):613-9. PubMed ID: 19010770
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation and characterization of new proliferating cell nuclear antigen (POL30) mutator mutants that are defective in DNA mismatch repair.
    Lau PJ; Flores-Rozas H; Kolodner RD
    Mol Cell Biol; 2002 Oct; 22(19):6669-80. PubMed ID: 12215524
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes.
    Clark AB; Valle F; Drotschmann K; Gary RK; Kunkel TA
    J Biol Chem; 2000 Nov; 275(47):36498-501. PubMed ID: 11005803
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Post-replicative base excision repair in replication foci.
    Otterlei M; Warbrick E; Nagelhus TA; Haug T; Slupphaug G; Akbari M; Aas PA; Steinsbekk K; Bakke O; Krokan HE
    EMBO J; 1999 Jul; 18(13):3834-44. PubMed ID: 10393198
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Model of Somatic Hypermutation Targeting in Mice Based on High-Throughput Ig Sequencing Data.
    Cui A; Di Niro R; Vander Heiden JA; Briggs AW; Adams K; Gilbert T; O'Connor KC; Vigneault F; Shlomchik MJ; Kleinstein SH
    J Immunol; 2016 Nov; 197(9):3566-3574. PubMed ID: 27707999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies.
    Hwang JK; Wang C; Du Z; Meyers RM; Kepler TB; Neuberg D; Kwong PD; Mascola JR; Joyce MG; Bonsignori M; Haynes BF; Yeap LS; Alt FW
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8614-8619. PubMed ID: 28747530
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of N-Terminal Phospho-Regulation of Uracil DNA Glycosylase Using Protein Semisynthesis.
    Weiser BP; Stivers JT; Cole PA
    Biophys J; 2017 Jul; 113(2):393-401. PubMed ID: 28746850
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes.
    Wilson TM; Vaisman A; Martomo SA; Sullivan P; Lan L; Hanaoka F; Yasui A; Woodgate R; Gearhart PJ
    J Exp Med; 2005 Feb; 201(4):637-45. PubMed ID: 15710654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.