BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 19901261)

  • 1. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias.
    Ommen HB; Schnittger S; Jovanovic JV; Ommen IB; Hasle H; Østergaard M; Grimwade D; Hokland P
    Blood; 2010 Jan; 115(2):198-205. PubMed ID: 19901261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dynamics of RUNX1-RUNX1T1 transcript levels after allogeneic hematopoietic stem cell transplantation predict relapse in patients with t(8;21) acute myeloid leukemia.
    Qin YZ; Wang Y; Xu LP; Zhang XH; Chen H; Han W; Chen YH; Wang FR; Wang JZ; Chen Y; Mo XD; Zhao XS; Chang YJ; Liu KY; Huang XJ
    J Hematol Oncol; 2017 Feb; 10(1):44. PubMed ID: 28166825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective evaluation of prognostic impact of KIT mutations on acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-MYH11.
    Ishikawa Y; Kawashima N; Atsuta Y; Sugiura I; Sawa M; Dobashi N; Yokoyama H; Doki N; Tomita A; Kiguchi T; Koh S; Kanamori H; Iriyama N; Kohno A; Moriuchi Y; Asada N; Hirano D; Togitani K; Sakura T; Hagihara M; Tomikawa T; Yokoyama Y; Asou N; Ohtake S; Matsumura I; Miyazaki Y; Naoe T; Kiyoi H
    Blood Adv; 2020 Jan; 4(1):66-75. PubMed ID: 31899799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of minimal residual disease monitoring by real-time quantitative polymerase chain reaction in core binding factor acute myeloid leukemia for transplantation outcomes.
    Yalniz FF; Patel KP; Bashir Q; Marin D; Ahmed S; Alousi AM; Chen J; Ciurea SO; Rezvani K; Popat UR; Shpall EJ; Champlin RE; Oran B
    Cancer; 2020 May; 126(10):2183-2192. PubMed ID: 32101640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteogenomic analysis reveals cytoplasmic sequestration of RUNX1 by the acute myeloid leukemia-initiating CBFB::MYH11 oncofusion protein.
    Day RB; Hickman JA; Xu Z; Katerndahl CD; Ferraro F; Ramakrishnan SM; Erdmann-Gilmore P; Sprung RW; Mi Y; Townsend RR; Miller CA; Ley TJ
    J Clin Invest; 2023 Dec; 134(4):. PubMed ID: 38061017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospective long-term minimal residual disease monitoring using RQ-PCR in RUNX1-RUNX1T1-positive acute myeloid leukemia: results of the French CBF-2006 trial.
    Willekens C; Blanchet O; Renneville A; Cornillet-Lefebvre P; Pautas C; Guieze R; Ifrah N; Dombret H; Jourdan E; Preudhomme C; Boissel N;
    Haematologica; 2016 Mar; 101(3):328-35. PubMed ID: 26635039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA sequencing as an alternative tool for detecting measurable residual disease in core-binding factor acute myeloid leukemia.
    Kim T; Moon JH; Ahn JS; Ahn SY; Jung SH; Yang DH; Lee JJ; Shin MG; Choi SH; Lee JY; Tyndel MS; Lee HY; Kim KH; Cai Y; Lee YJ; Sohn SK; Min YH; Cheong JW; Kim HJ; Zhang Z; Kim DDH
    Sci Rep; 2020 Nov; 10(1):20119. PubMed ID: 33208771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CSF3R Mutations are frequently associated with abnormalities of RUNX1, CBFB, CEBPA, and NPM1 genes in acute myeloid leukemia.
    Zhang Y; Wang F; Chen X; Zhang Y; Wang M; Liu H; Cao P; Ma X; Wang T; Zhang J; Zhang X; Lu P; Liu H
    Cancer; 2018 Aug; 124(16):3329-3338. PubMed ID: 29932212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classifying AML patients with inv(16) into high-risk and low-risk relapsed patients based on peritransplantation minimal residual disease determined by CBFβ/MYH11 gene expression.
    Xiaosu Z; Leqing C; Yazhen Q; Yu W; Xiaohui Z; Lanping X; Xiaojun H; Yingjun C
    Ann Hematol; 2019 Jan; 98(1):73-81. PubMed ID: 30159599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial.
    Yin JA; O'Brien MA; Hills RK; Daly SB; Wheatley K; Burnett AK
    Blood; 2012 Oct; 120(14):2826-35. PubMed ID: 22875911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Prognostic value of dynamic monitoring of RUNX1-RUNX1T1 transcript in pediatric acute myeloid leukemia].
    Gao HT; Zhang Y; Sun K; Guo JM; Chen YQ; Chen XL; Shi J; Niu XN; Wang F; Huo L
    Zhonghua Xue Ye Xue Za Zhi; 2017 Mar; 38(3):210-215. PubMed ID: 28395444
    [No Abstract]   [Full Text] [Related]  

  • 12. RUNX1 repression-independent mechanisms of leukemogenesis by fusion genes CBFB-MYH11 and AML1-ETO (RUNX1-RUNX1T1).
    Hyde RK; Liu PP
    J Cell Biochem; 2010 Aug; 110(5):1039-45. PubMed ID: 20589720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and treatment of molecular relapse in acute myeloid leukemia with RUNX1 (AML1), CBFB, or MLL gene translocations: frequent quantitative monitoring of molecular markers in different compartments and correlation with WT1 gene expression.
    Doubek M; Palasek I; Pospisil Z; Borsky M; Klabusay M; Brychtova Y; Jurcek T; Jeziskova I; Krejci M; Dvorakova D; Mayer J
    Exp Hematol; 2009 Jun; 37(6):659-72. PubMed ID: 19463768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent altered fusion transcript splicing identifies RUNX1-RUNX1T1+ AML patients likely to relapse.
    Ommen HB; Ostergaard M; Yan M; Braendstrup K; Zhang DE; Hokland P
    Eur J Haematol; 2010 Feb; 84(2):128-32. PubMed ID: 19891700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exome sequencing identifies recurring FLT3 N676K mutations in core-binding factor leukemia.
    Opatz S; Polzer H; Herold T; Konstandin NP; Ksienzyk B; Zellmeier E; Vosberg S; Graf A; Krebs S; Blum H; Hopfner KP; Kakadia PM; Schneider S; Dufour A; Braess J; Sauerland MC; Berdel WE; Büchner T; Woermann BJ; Hiddemann W; Spiekermann K; Bohlander SK; Greif PA
    Blood; 2013 Sep; 122(10):1761-9. PubMed ID: 23878140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome.
    Krauth MT; Eder C; Alpermann T; Bacher U; Nadarajah N; Kern W; Haferlach C; Haferlach T; Schnittger S
    Leukemia; 2014 Jul; 28(7):1449-58. PubMed ID: 24402164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurable residual disease monitoring provides insufficient lead-time to prevent morphologic relapse in the majority of patients with core-binding factor acute myeloid leukemia.
    Puckrin R; Atenafu EG; Claudio JO; Chan S; Gupta V; Maze D; McNamara C; Murphy T; Shuh AC; Yee K; Sibai H; Minden MD; Wei C; Stockley T; Kamel-Reid S; Schimmer AD
    Haematologica; 2021 Jan; 106(1):56-63. PubMed ID: 31896684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-expression of AML1-ETO and PML-RARa following treatment of de novo acute myeloid leukemia with AML1-ETO.
    Zhang S; Zhou W; Li Y; Yu S; Xue M; Qiao Y; Jian J; Liu B; Wang D
    Leuk Lymphoma; 2019 May; 60(5):1316-1319. PubMed ID: 30328750
    [No Abstract]   [Full Text] [Related]  

  • 19. Comprehensive Mutation Profile in Acute Myeloid Leukemia Patients with
    Qin W; Chen X; Shen HJ; Wang Z; Cai X; Jiang N; Hua H
    Turk J Haematol; 2022 Jun; 39(2):84-93. PubMed ID: 35445594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gata2 deficiency delays leukemogenesis while contributing to aggressive leukemia phenotype in Cbfb-MYH11 knockin mice.
    Saida S; Zhen T; Kim E; Yu K; Lopez G; McReynolds LJ; Liu PP
    Leukemia; 2020 Mar; 34(3):759-770. PubMed ID: 31624376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.