These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19902419)

  • 21. Equilibrator inlet-proton transfer reaction-mass spectrometry (EI-PTR-MS) for sensitive, high-resolution measurement of dimethyl sulfide dissolved in seawater.
    Kameyama S; Tanimoto H; Inomata S; Tsunogai U; Ooki A; Yokouchi Y; Takeda S; Obata H; Uematsu M
    Anal Chem; 2009 Nov; 81(21):9021-6. PubMed ID: 19791769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New poly(N,N-dimethylaminoethyl methacrylate)/polyvinyl alcohol copolymer coated QCM sensor for interaction with CWA simulants.
    Zhang Z; Fan J; Yu J; Zheng S; Chen W; Li H; Wang Z; Zhang W
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):944-9. PubMed ID: 22257173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-proximate detection of small and large molecules by desorption electrospray ionization and desorption atmospheric pressure chemical ionization mass spectrometry: instrumentation and applications in forensics, chemistry, and biology.
    Cotte-Rodríguez I; Mulligan CC; Cooks RG
    Anal Chem; 2007 Sep; 79(18):7069-77. PubMed ID: 17696318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extending the dynamic range of proton transfer reaction time-of-flight mass spectrometers by a novel dead time correction.
    Cappellin L; Biasioli F; Schuhfried E; Soukoulis C; Märk TD; Gasperi F
    Rapid Commun Mass Spectrom; 2011 Jan; 25(1):179-83. PubMed ID: 21154901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PTR-TOF-MS and data-mining methods for rapid characterisation of agro-industrial samples: influence of milk storage conditions on the volatile compounds profile of Trentingrana cheese.
    Fabris A; Biasioli F; Granitto PM; Aprea E; Cappellin L; Schuhfried E; Soukoulis C; Märk TD; Gasperi F; Endrizzi I
    J Mass Spectrom; 2010 Sep; 45(9):1065-74. PubMed ID: 20690164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differentiation of isobaric compounds using chemical ionization reaction mass spectrometry.
    Wyche KP; Blake RS; Willis KA; Monks PS; Ellis AM
    Rapid Commun Mass Spectrom; 2005; 19(22):3356-62. PubMed ID: 16235237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct sampling of chemical weapons in water by photoionization mass spectrometry.
    Syage JA; Cai SS; Li J; Evans MD
    Anal Chem; 2006 May; 78(9):2967-76. PubMed ID: 16642982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.
    Smith JN; Noll RJ; Cooks RG
    Rapid Commun Mass Spectrom; 2011 May; 25(10):1437-44. PubMed ID: 21504010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Programmable gate delayed ion mobility spectrometry-mass spectrometry: a study with low concentrations of dipropylene-glycol-monomethyl-ether in air.
    Hill CA; Thomas CL
    Analyst; 2005 Aug; 130(8):1155-61. PubMed ID: 16021214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of trace amounts of chemical warfare agent degradation products in decontamination solutions with NMR spectroscopy.
    Koskela H; Rapinoja ML; Kuitunen ML; Vanninen P
    Anal Chem; 2007 Dec; 79(23):9098-106. PubMed ID: 17973498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques.
    Pearman WF; Fountain AW
    Appl Spectrosc; 2006 Apr; 60(4):356-65. PubMed ID: 16613630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry.
    McKenna J; Dhummakupt ES; Connell T; Demond PS; Miller DB; Michael Nilles J; Manicke NE; Glaros T
    Analyst; 2017 May; 142(9):1442-1451. PubMed ID: 28338135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast and Selective Detection of Trace Chemical Warfare Agents Enabled by an ESIPT-Based Fluorescent Film Sensor.
    Liu K; Qin M; Shi Q; Wang G; Zhang J; Ding N; Xi H; Liu T; Kong J; Fang Y
    Anal Chem; 2022 Aug; 94(32):11151-11158. PubMed ID: 35921590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On-line breath analysis with PTR-TOF.
    Herbig J; Müller M; Schallhart S; Titzmann T; Graus M; Hansel A
    J Breath Res; 2009 Jun; 3(2):027004. PubMed ID: 21383459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid chromatography electrospray tandem mass spectrometric and desorption electrospray ionization tandem mass spectrometric analysis of chemical warfare agents in office media typically collected during a forensic investigation.
    D'Agostino PA; Hancock JR; Chenier CL; Lepage CR
    J Chromatogr A; 2006 Mar; 1110(1-2):86-94. PubMed ID: 16480731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near real time detection of hazardous airborne substances.
    Leppert J; Horner G; Rietz F; Ringer J; Schulze Lammers P; Boeker P
    Talanta; 2012 Nov; 101():440-6. PubMed ID: 23158346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton transfer reaction mass spectrometry and the unambiguous real-time detection of 2,4,6 trinitrotoluene.
    Sulzer P; Petersson F; Agarwal B; Becker KH; Jürschik S; Märk TD; Perry D; Watts P; Mayhew CA
    Anal Chem; 2012 May; 84(9):4161-6. PubMed ID: 22482459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using cheminformatics to find simulants for chemical warfare agents.
    Lavoie J; Srinivasan S; Nagarajan R
    J Hazard Mater; 2011 Oct; 194():85-91. PubMed ID: 21872989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.
    Urabe T; Takahashi K; Kitagawa M; Sato T; Kondo T; Enomoto S; Kidera M; Seto Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():437-44. PubMed ID: 24211802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a proton-transfer reaction-linear ion trap mass spectrometer for quantitative determination of volatile organic compounds.
    Mielke LH; Erickson DE; McLuckey SA; Müller M; Wisthaler A; Hansel A; Shepson PB
    Anal Chem; 2008 Nov; 80(21):8171-7. PubMed ID: 18841942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.