These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 19903084)
1. Transcriptomics of traumatic brain injury: gene expression and molecular pathways of different grades of insult in a rat organotypic hippocampal culture model. Di Pietro V; Amin D; Pernagallo S; Lazzarino G; Tavazzi B; Vagnozzi R; Pringle A; Belli A J Neurotrauma; 2010 Feb; 27(2):349-59. PubMed ID: 19903084 [TBL] [Abstract][Full Text] [Related]
2. Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels. Cater HL; Gitterman D; Davis SM; Benham CD; Morrison B; Sundstrom LE J Neurochem; 2007 Apr; 101(2):434-47. PubMed ID: 17250683 [TBL] [Abstract][Full Text] [Related]
3. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. Morrison B; Cater HL; Benham CD; Sundstrom LE J Neurosci Methods; 2006 Jan; 150(2):192-201. PubMed ID: 16098599 [TBL] [Abstract][Full Text] [Related]
4. Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice. Thompson SN; Gibson TR; Thompson BM; Deng Y; Hall ED Exp Neurol; 2006 Sep; 201(1):253-65. PubMed ID: 16814284 [TBL] [Abstract][Full Text] [Related]
5. Analysis of long-term gene expression in neurons of the hippocampal subfields following traumatic brain injury in rats. Shimamura M; Garcia JM; Prough DS; Dewitt DS; Uchida T; Shah SA; Avila MA; Hellmich HL Neuroscience; 2005; 131(1):87-97. PubMed ID: 15680694 [TBL] [Abstract][Full Text] [Related]
6. Genetic and histologic evidence implicates role of inflammation in traumatic brain injury-induced apoptosis in the rat cerebral cortex following moderate fluid percussion injury. Shojo H; Kaneko Y; Mabuchi T; Kibayashi K; Adachi N; Borlongan CV Neuroscience; 2010 Dec; 171(4):1273-82. PubMed ID: 20950674 [TBL] [Abstract][Full Text] [Related]
7. S100B and Glial Fibrillary Acidic Protein as Indexes to Monitor Damage Severity in an In Vitro Model of Traumatic Brain Injury. Di Pietro V; Amorini AM; Lazzarino G; Yakoub KM; D'Urso S; Lazzarino G; Belli A Neurochem Res; 2015 May; 40(5):991-9. PubMed ID: 25898931 [TBL] [Abstract][Full Text] [Related]
8. Electrophysiological and Pathological Characterization of the Period of Heightened Vulnerability to Repetitive Injury in an in Vitro Stretch Model. Effgen GB; Morrison B J Neurotrauma; 2017 Feb; 34(4):914-924. PubMed ID: 27091089 [TBL] [Abstract][Full Text] [Related]
9. Microarray-based gene expression analysis of an animal model for closed head injury. Colak T; Cine N; Bamac B; Kurtas O; Ozbek A; Bicer U; Sunnetci D; Savlı H Injury; 2012 Aug; 43(8):1264-70. PubMed ID: 22341557 [TBL] [Abstract][Full Text] [Related]
10. Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Lei P; Li Y; Chen X; Yang S; Zhang J Brain Res; 2009 Aug; 1284():191-201. PubMed ID: 19501075 [TBL] [Abstract][Full Text] [Related]
11. Modeling neural injury in organotypic cultures by application of inertia-driven shear strain. Bottlang M; Sommers MB; Lusardi TA; Miesch JJ; Simon RP; Xiong ZG J Neurotrauma; 2007 Jun; 24(6):1068-77. PubMed ID: 17600521 [TBL] [Abstract][Full Text] [Related]
13. Activation of microglial cells and complement following traumatic injury in rat entorhinal-hippocampal slice cultures. Bellander BM; Bendel O; Von Euler G; Ohlsson M; Svensson M J Neurotrauma; 2004 May; 21(5):605-15. PubMed ID: 15165368 [TBL] [Abstract][Full Text] [Related]
14. Differential gene expression in hippocampus following experimental brain trauma reveals distinct features of moderate and severe injuries. Li HH; Lee SM; Cai Y; Sutton RL; Hovda DA J Neurotrauma; 2004 Sep; 21(9):1141-53. PubMed ID: 15453985 [TBL] [Abstract][Full Text] [Related]
16. Effects of injury severity on regional and temporal mRNA expression levels of calpains and caspases after traumatic brain injury in rats. Ringger NC; Tolentino PJ; McKinsey DM; Pike BR; Wang KK; Hayes RL J Neurotrauma; 2004 Jul; 21(7):829-41. PubMed ID: 15307896 [TBL] [Abstract][Full Text] [Related]
17. Bioinformatics analysis of gene expression profiles in the rat cerebral cortex following traumatic brain injury. Ou S; Liu GD; Zhou LS; Xia X; Bai SR; Li J; Cui J; Cheng JM; Li YM; Zhang XY; Gu JW Eur Rev Med Pharmacol Sci; 2014; 18(1):101-7. PubMed ID: 24452950 [TBL] [Abstract][Full Text] [Related]
18. Traumatic brain injury-induced changes in gene expression and functional activity of mitochondrial cytochrome C oxidase. Harris LK; Black RT; Golden KM; Reeves TM; Povlishock JT; Phillips LL J Neurotrauma; 2001 Oct; 18(10):993-1009. PubMed ID: 11686499 [TBL] [Abstract][Full Text] [Related]
19. Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. Raghavendra Rao VL; Dhodda VK; Song G; Bowen KK; Dempsey RJ J Neurosci Res; 2003 Jan; 71(2):208-19. PubMed ID: 12503083 [TBL] [Abstract][Full Text] [Related]
20. Matrix metalloproteinase-9 expression and protein levels after fluid percussion injury in rats: the effect of injury severity and brain temperature. Jia F; Pan YH; Mao Q; Liang YM; Jiang JY J Neurotrauma; 2010 Jun; 27(6):1059-68. PubMed ID: 20233042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]