These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Electrophoretic transport in surfactant nanotube networks wired on microfabricated substrates. Hurtig J; Gustafsson B; Tokarz M; Orwar O Anal Chem; 2006 Aug; 78(15):5281-8. PubMed ID: 16878860 [TBL] [Abstract][Full Text] [Related]
3. Controlled initiation of enzymatic reactions in micrometer-sized biomimetic compartments. Karlsson A; Sott K; Markström M; Davidson M; Konkoli Z; Orwar O J Phys Chem B; 2005 Feb; 109(4):1609-17. PubMed ID: 16851132 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic nanoscale reactors and networks. Karlsson M; Davidson M; Karlsson R; Karlsson A; Bergenholtz J; Konkoli Z; Jesorka A; Lobovkina T; Hurtig J; Voinova M; Orwar O Annu Rev Phys Chem; 2004; 55():613-49. PubMed ID: 15117264 [TBL] [Abstract][Full Text] [Related]
5. Nanotube-vesicle networks with functionalized membranes and interiors. Davidson M; Karlsson M; Sinclair J; Sott K; Orwar O J Am Chem Soc; 2003 Jan; 125(2):374-8. PubMed ID: 12517148 [TBL] [Abstract][Full Text] [Related]
6. Fluid mixing in growing microscale vesicles conjugated by surfactant nanotubes. Davidson M; Dommersnes P; Markström M; Joanny JF; Karlsson M; Orwar O J Am Chem Soc; 2005 Feb; 127(4):1251-7. PubMed ID: 15669864 [TBL] [Abstract][Full Text] [Related]
7. DNA-nanotube artificial ion channels. Harrell CC; Kohli P; Siwy Z; Martin CR J Am Chem Soc; 2004 Dec; 126(48):15646-7. PubMed ID: 15571378 [TBL] [Abstract][Full Text] [Related]
8. Utilization of cell-sized lipid containers for nanostructure and macromolecule handling in microfabricated devices. Tresset G; Takeuchi S Anal Chem; 2005 May; 77(9):2795-801. PubMed ID: 15859595 [TBL] [Abstract][Full Text] [Related]
9. Controlled patterning of aligned self-assembled peptide nanotubes. Reches M; Gazit E Nat Nanotechnol; 2006 Dec; 1(3):195-200. PubMed ID: 18654186 [TBL] [Abstract][Full Text] [Related]
10. Direct reconstitution of plasma membrane lipids and proteins in nanotube-vesicle networks. Bauer B; Davidson M; Orwar O Langmuir; 2006 Oct; 22(22):9329-32. PubMed ID: 17042549 [TBL] [Abstract][Full Text] [Related]
12. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors. Fu Q; Liu J J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676 [TBL] [Abstract][Full Text] [Related]
13. Fluctuations of a membrane nanotube revealed by high-resolution force measurements. Valentino F; Sens P; Lemière J; Allard A; Betz T; Campillo C; Sykes C Soft Matter; 2016 Nov; 12(47):9429-9435. PubMed ID: 27830219 [TBL] [Abstract][Full Text] [Related]
14. Food analysis on microfluidic devices using ultrasensitive carbon nanotubes detectors. Crevillén AG; Avila M; Pumera M; González MC; Escarpa A Anal Chem; 2007 Oct; 79(19):7408-15. PubMed ID: 17822311 [TBL] [Abstract][Full Text] [Related]
15. Controlling enzymatic reactions by geometry in a biomimetic nanoscale network. Sott K; Lobovkina T; Lizana L; Tokarz M; Bauer B; Konkoli Z; Orwar O Nano Lett; 2006 Feb; 6(2):209-14. PubMed ID: 16464036 [TBL] [Abstract][Full Text] [Related]