These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport. Kuo TJ; Huang MH J Phys Chem B; 2006 Jul; 110(28):13717-21. PubMed ID: 16836315 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of iron silicon boron (Fe5Si2B) and iron boride (Fe3B) nanowires. Li Y; Chang RP J Am Chem Soc; 2006 Oct; 128(39):12778-84. PubMed ID: 17002372 [TBL] [Abstract][Full Text] [Related]
4. Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process. Zhu H; Iqbal J; Xu H; Yu D J Chem Phys; 2008 Sep; 129(12):124713. PubMed ID: 19045054 [TBL] [Abstract][Full Text] [Related]
5. Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy. Koblmüller G; Hertenberger S; Vizbaras K; Bichler M; Bao F; Zhang JP; Abstreiter G Nanotechnology; 2010 Sep; 21(36):365602. PubMed ID: 20702932 [TBL] [Abstract][Full Text] [Related]
6. Self-catalysis: a contamination-free, substrate-free growth mechanism for single-crystal nanowire and nanotube growth by chemical vapor deposition. Noor Mohammad S J Chem Phys; 2006 Sep; 125(9):094705. PubMed ID: 16965103 [TBL] [Abstract][Full Text] [Related]
7. Large-scale synthesis and microstructure of SnO2 nanowires coated with quantum-sized ZnO nanocrystals on a mesh substrate. Yu W; Li X; Gao X; Wu F J Phys Chem B; 2005 Sep; 109(36):17078-81. PubMed ID: 16853177 [TBL] [Abstract][Full Text] [Related]
8. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method. Li S; Zhang X; Yan B; Yu T Nanotechnology; 2009 Dec; 20(49):495604. PubMed ID: 19893154 [TBL] [Abstract][Full Text] [Related]
9. Controlled synthesis of ultra-long AlN nanowires in different densities and in situ investigation of the physical properties of an individual AlN nanowire. Liu F; Su ZJ; Mo FY; Li L; Chen ZS; Liu QR; Chen J; Deng SZ; Xu NS Nanoscale; 2011 Feb; 3(2):610-8. PubMed ID: 21103529 [TBL] [Abstract][Full Text] [Related]
10. Vapor-solid growth of Sn nanowires: growth mechanism and superconductivity. Hsu YJ; Lu SY J Phys Chem B; 2005 Mar; 109(10):4398-403. PubMed ID: 16851508 [TBL] [Abstract][Full Text] [Related]
11. Growth and luminescence of ternary semiconductor ZnCdSe nanowires by metalorganic chemical vapor deposition. Zhang XT; Liu Z; Li Q; Hark SK J Phys Chem B; 2005 Sep; 109(38):17913-6. PubMed ID: 16853298 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of self-supported patterns of aligned beta-FeOOH nanowires by a low-temperature solution reaction. Xiong Y; Xie Y; Chen S; Li Z Chemistry; 2003 Oct; 9(20):4991-6. PubMed ID: 14562317 [TBL] [Abstract][Full Text] [Related]
13. Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation. Bae SY; Na CW; Kang JH; Park J J Phys Chem B; 2005 Feb; 109(7):2526-31. PubMed ID: 16851252 [TBL] [Abstract][Full Text] [Related]
14. Parallel-aligned GaAs nanowires with 110 orientation laterally grown on [311]B substrates via the gold-catalyzed vapor-liquid-solid mode. Zhang G; Tateno K; Gotoh H; Nakano H Nanotechnology; 2010 Mar; 21(9):095607. PubMed ID: 20139489 [TBL] [Abstract][Full Text] [Related]
16. Vertically well aligned P-doped ZnO nanowires synthesized on ZnO-Ga/glass templates. Hsu CL; Chang SJ; Lin YR; Tsai SY; Chen IC Chem Commun (Camb); 2005 Jul; (28):3571-3. PubMed ID: 16010327 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of straight and zigzag AlN nanowires. Duan JH; Yang SG; Liu HW; Gong JF; Huang HB; Zhao XN; Zhang R; Du YW J Phys Chem B; 2005 Mar; 109(9):3701-3. PubMed ID: 16851410 [TBL] [Abstract][Full Text] [Related]
18. Temperature-controlled growth of ZnO nanowires and nanoplates in the temperature range 250-300 degrees C. Xu C; Kim D; Chun J; Rho K; Chon B; Hong S; Joo T J Phys Chem B; 2006 Nov; 110(43):21741-6. PubMed ID: 17064134 [TBL] [Abstract][Full Text] [Related]
19. Growth of Cu2S ultrathin nanowires in a binary surfactant solvent. Liu Z; Xu D; Liang J; Shen J; Zhang S; Qian Y J Phys Chem B; 2005 Jun; 109(21):10699-704. PubMed ID: 16852299 [TBL] [Abstract][Full Text] [Related]
20. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles. Petersen EW; Likovich EM; Russell KJ; Narayanamurti V Nanotechnology; 2009 Oct; 20(40):405603. PubMed ID: 19738315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]