BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19904313)

  • 1. Microgrinding of lensed fibers by means of a scanning-probe microscope setup.
    Yakunin S; Heitz J
    Appl Opt; 2009 Nov; 48(32):6172-7. PubMed ID: 19904313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear force distance control in a scanning near-field optical microscope: in resonance excitation of the fiber probe versus out of resonance excitation.
    Lapshin DA; Letokhov VS; Shubeita GT; Sekatskii SK; Dietler G
    Ultramicroscopy; 2004 Jun; 99(4):227-33. PubMed ID: 15149717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibration amplitude of a tip-loaded quartz tuning fork during shear force microscopy scanning.
    Sandoz P; Friedt JM; Carry E
    Rev Sci Instrum; 2008 Aug; 79(8):086102. PubMed ID: 19044383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunneling/shear force microscopy using piezoelectric tuning forks for characterization of topography and local electric surface properties.
    Woszczyna M; Zawierucha P; Masalska A; Jóźwiak G; Staryga E; Gotszalk T
    Ultramicroscopy; 2010 Jun; 110(7):877-80. PubMed ID: 20413221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation and characterization of a quartz tuning fork based probe consisted of discrete resonators for dynamic mode atomic force microscopy.
    Akiyama T; de Rooij NF; Staufer U; Detterbeck M; Braendlin D; Waldmeier S; Scheidiger M
    Rev Sci Instrum; 2010 Jun; 81(6):063706. PubMed ID: 20590245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibrating a tuning fork for use as a scanning probe microscope force sensor.
    Qin Y; Reifenberger R
    Rev Sci Instrum; 2007 Jun; 78(6):063704. PubMed ID: 17614613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface photovoltage spectroscopy in a Kelvin probe force microscope under ultrahigh vacuum.
    Streicher F; Sadewasser S; Lux-Steiner MCh
    Rev Sci Instrum; 2009 Jan; 80(1):013907. PubMed ID: 19191447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method of Q factor optimization by introducing two nodal wedges in a tuning-fork/fiber probe distance sensor.
    Park KD; Kim DC; O BH; Park SG; Lee el-H; Lee SG
    Rev Sci Instrum; 2010 Sep; 81(9):093702. PubMed ID: 20886982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilized diaphorase surfaces observed by scanning electrochemical microscope with shear force based tip-substrate positioning.
    Yamada H; Fukumoto H; Yokoyama T; Koike T
    Anal Chem; 2005 Mar; 77(6):1785-90. PubMed ID: 15762586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray excited optical luminescence detection by scanning near-field optical microscope: a new tool for nanoscience.
    Larcheri S; Rocca F; Jandard F; Pailharey D; Graziola R; Kuzmin A; Purans J
    Rev Sci Instrum; 2008 Jan; 79(1):013702. PubMed ID: 18248034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors.
    Castellanos-Gomez A; Agraït N; Rubio-Bollinger G
    Nanotechnology; 2010 Apr; 21(14):145702. PubMed ID: 20220220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tuning fork based wide range mechanical characterization tool with nanorobotic manipulators inside a scanning electron microscope.
    Acosta JC; Hwang G; Polesel-Maris J; Régnier S
    Rev Sci Instrum; 2011 Mar; 82(3):035116. PubMed ID: 21456797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy.
    Albers BJ; Liebmann M; Schwendemann TC; Baykara MZ; Heyde M; Salmeron M; Altman EI; Schwarz UD
    Rev Sci Instrum; 2008 Mar; 79(3):033704. PubMed ID: 18377012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning near-field optical microscope based on a double resonant fibre probe montage and equipped with time-gated photon detection.
    Serebryakov DV; Sekatskii SK; Cherkun AP; Dukenbayev K; Morozov IV; Letokhov VS; Dietler G
    J Microsc; 2008 Feb; 229(Pt 2):287-92. PubMed ID: 18304087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature and high magnetic field dynamic scanning capacitance microscope.
    Baumgartner A; Suddards ME; Mellor CJ
    Rev Sci Instrum; 2009 Jan; 80(1):013704. PubMed ID: 19191438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact variable-temperature scanning force microscope.
    Chuang TM; de Lozanne A
    Rev Sci Instrum; 2007 May; 78(5):053710. PubMed ID: 17552828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitude and frequency modulation torsional resonance mode atomic force microscopy of a mineral surface.
    Yurtsever A; Gigler AM; Stark RW
    Ultramicroscopy; 2009 Feb; 109(3):275-9. PubMed ID: 19131169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically stable tuning fork sensor with high quality factor for the atomic force microscope.
    Kim K; Park JY; Kim KB; Lee N; Seo Y
    Scanning; 2014; 36(6):632-9. PubMed ID: 25229367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whispering-gallery acoustic sensing: characterization of mesoscopic films and scanning probe microscopy applications.
    La Rosa AH; Li N; Fernandez R; Wang X; Nordstrom R; Padigi SK
    Rev Sci Instrum; 2011 Sep; 82(9):093704. PubMed ID: 21974591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.
    Maruyama K; Ohkawa H; Ogawa S; Ueda A; Niwa O; Suzuki K
    Anal Chem; 2006 Mar; 78(6):1904-12. PubMed ID: 16536427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.