These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Laser ranging and mapping with a photon-counting detector. Priedhorsky WC; Smith RC; Ho C Appl Opt; 1996 Jan; 35(3):441-52. PubMed ID: 21069029 [TBL] [Abstract][Full Text] [Related]
8. Development and analysis of a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system. Oh MS; Kong HJ; Kim TH; Jo SE; Kim BW; Park DJ J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):759-65. PubMed ID: 21532685 [TBL] [Abstract][Full Text] [Related]
9. Single-photon three-dimensional imaging at up to 10 kilometers range. Pawlikowska AM; Halimi A; Lamb RA; Buller GS Opt Express; 2017 May; 25(10):11919-11931. PubMed ID: 28788749 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence lifetime images and correlation spectra obtained by multidimensional time-correlated single photon counting. Becker W; Bergmann A; Haustein E; Petrasek Z; Schwille P; Biskup C; Kelbauskas L; Benndorf K; Klöcker N; Anhut T; Riemann I; König K Microsc Res Tech; 2006 Mar; 69(3):186-95. PubMed ID: 16538624 [TBL] [Abstract][Full Text] [Related]
11. [Limits of the confocal laser-scanning technique in measurements of time-resolved autofluorescence of the ocular fundus]. Schweitzer D; Hammer M; Schweitzer F Biomed Tech (Berl); 2005 Sep; 50(9):263-7. PubMed ID: 16185033 [TBL] [Abstract][Full Text] [Related]
12. Rapid wide-field photon counting imaging with microsecond time resolution. Suhling K; Sergent N; Levitt J; Green M Opt Express; 2010 Nov; 18(24):25292-8. PubMed ID: 21164877 [TBL] [Abstract][Full Text] [Related]
13. Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range. Toussaint J; Grüner R; Schubert M; May T; Meyer HG; Dietzek B; Popp J; Hofherr M; Arndt M; Henrich D; Il'in K; Siegel M Rev Sci Instrum; 2012 Dec; 83(12):123103. PubMed ID: 23277968 [TBL] [Abstract][Full Text] [Related]
14. Exploiting sparsity in time-of-flight range acquisition using a single time-resolved sensor. Kirmani A; Colaço A; Wong FN; Goyal VK Opt Express; 2011 Oct; 19(22):21485-507. PubMed ID: 22108998 [TBL] [Abstract][Full Text] [Related]
15. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system. Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362 [TBL] [Abstract][Full Text] [Related]
16. Submerged single-photon LiDAR imaging sensor used for real-time 3D scene reconstruction in scattering underwater environments. Maccarone A; Drummond K; McCarthy A; Steinlehner UK; Tachella J; Garcia DA; Pawlikowska A; Lamb RA; Henderson RK; McLaughlin S; Altmann Y; Buller GS Opt Express; 2023 May; 31(10):16690-16708. PubMed ID: 37157743 [TBL] [Abstract][Full Text] [Related]