These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 19904380)

  • 1. Towards a tunable and switchable water adhesion on a TiO(2) nanotube film with patterned wettability.
    Wang D; Liu Y; Liu X; Zhou F; Liu W; Xue Q
    Chem Commun (Camb); 2009 Dec; (45):7018-20. PubMed ID: 19904380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible superhydrophobicity to superhydrophilicity switching of a carbon nanotube film via alternation of UV irradiation and dark storage.
    Yang J; Zhang Z; Men X; Xu X; Zhu X
    Langmuir; 2010 Jun; 26(12):10198-202. PubMed ID: 20394384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid control of switchable oil wettability and adhesion on the copper substrate.
    Zhu X; Zhang Z; Xu X; Men X; Yang J; Zhou X; Xue Q
    Langmuir; 2011 Dec; 27(23):14508-13. PubMed ID: 22032612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin SiO(x) Film Coating Effect on the Wettability Change of TiO(2) Surfaces in the Presence and Absence of UV Light Illumination.
    Hattori A; Kawahara T; Uemoto T; Suzuki F; Tada H; Ito S
    J Colloid Interface Sci; 2000 Dec; 232(2):410-413. PubMed ID: 11097778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern.
    Lim HS; Han JT; Kwak D; Jin M; Cho K
    J Am Chem Soc; 2006 Nov; 128(45):14458-9. PubMed ID: 17090019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the tunable wettability property of poly(3-alkylthiophene) films.
    Lin P; Yan F; Chan HL
    Langmuir; 2009 Jul; 25(13):7465-70. PubMed ID: 19413307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method.
    Li Y; Cai W; Duan G; Cao B; Sun F; Lu F
    J Colloid Interface Sci; 2005 Jul; 287(2):634-9. PubMed ID: 15925631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring wettability change on aligned and patterned carbon nanotube films for selective assembly.
    Li P; Lim X; Zhu Y; Yu T; Ong CK; Shen Z; Wee AT; Sow CH
    J Phys Chem B; 2007 Feb; 111(7):1672-8. PubMed ID: 17266359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired TiO₂ nanostructure films with special wettability and adhesion for droplets manipulation and patterning.
    Lai YK; Tang YX; Huang JY; Pan F; Chen Z; Zhang KQ; Fuchs H; Chi LF
    Sci Rep; 2013 Oct; 3():3009. PubMed ID: 24145915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotexturing of polystyrene surface in fluorocarbon plasmas: from sticky to slippery superhydrophobicity.
    Mundo RD; Palumbo F; d'Agostino R
    Langmuir; 2008 May; 24(9):5044-51. PubMed ID: 18380513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability.
    Kim SH; Ha HJ; Ko YK; Yoon SJ; Rhee JM; Kim MS; Lee HB; Khang G
    J Biomater Sci Polym Ed; 2007; 18(5):609-22. PubMed ID: 17550662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.
    Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP
    Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable water permeation on a poly(N-isopropylacrylamide)-modified nanostructured copper mesh film.
    Song W; Xia F; Bai Y; Liu F; Sun T; Jiang L
    Langmuir; 2007 Jan; 23(1):327-31. PubMed ID: 17190522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new approach to the synthesis of functional thin films: hierarchical synthesis of CaCO3 thin films and their transformation into patterned metal thin films.
    Lee SW; Lee KB; Park SB
    Micron; 2009 Oct; 40(7):737-42. PubMed ID: 19541491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A smart "strider" can float on both water and oils.
    Qin L; Zhao J; Lei S; Pan Q
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21355-62. PubMed ID: 25402567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring the surface functionalities of titania nanotube arrays.
    Vasilev K; Poh Z; Kant K; Chan J; Michelmore A; Losic D
    Biomaterials; 2010 Jan; 31(3):532-40. PubMed ID: 19819014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The selective fabrication of large-area highly ordered TiO2 nanorod and nanotube arrays on conductive transparent substrates via sol-gel electrophoresis.
    Ren X; Gershon T; Iza DC; Muñoz-Rojas D; Musselman K; Macmanus-Driscoll JL
    Nanotechnology; 2009 Sep; 20(36):365604. PubMed ID: 19687541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion switch on a gecko-foot inspired smart nanocupule surface.
    Song W
    Nanoscale; 2014 Nov; 6(22):13435-9. PubMed ID: 25285657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.