These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

728 related articles for article (PubMed ID: 19904436)

  • 1. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.
    Li G; Richter CP; Milot RL; Cai L; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS
    Dalton Trans; 2009 Dec; (45):10078-85. PubMed ID: 19904436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application.
    Peng W; Yanagida M; Han L; Ahmed S
    Nanotechnology; 2011 Jul; 22(27):275709. PubMed ID: 21597134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of anatase/rutile mixed-phase titania nanoparticles for dye-sensitized solar cells.
    Hwang YK; Park SS; Lim JH; Won YS; Huh S
    J Nanosci Nanotechnol; 2013 Mar; 13(3):2255-61. PubMed ID: 23755675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes.
    Yun TK; Park SS; Kim D; Shim JH; Bae JY; Huh S; Won YS
    Dalton Trans; 2012 Jan; 41(4):1284-8. PubMed ID: 22124477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of TiCl4 treatment on surface defect photoluminescence in pure and mixed-phase nanocrystalline TiO2.
    Knorr FJ; Zhang D; McHale JL
    Langmuir; 2007 Aug; 23(17):8686-90. PubMed ID: 17658758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2.
    Liu GG; Zhang XZ; Xu YJ; Niu XS; Zheng LQ; Ding XJ
    Chemosphere; 2004 Jun; 55(9):1287-91. PubMed ID: 15081770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of controllable crystalline titania and study on the photocatalytic properties.
    Yan M; Chen F; Zhang J; Anpo M
    J Phys Chem B; 2005 May; 109(18):8673-8. PubMed ID: 16852027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via layer-by-layer assembly.
    Liu Z; Zhang X; Nishimoto S; Jin M; Tryk DA; Murakami T; Fujishima A
    Langmuir; 2007 Oct; 23(22):10916-9. PubMed ID: 17892314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes.
    Wen Y; Liu B; Zeng W; Wang Y
    Nanoscale; 2013 Oct; 5(20):9739-46. PubMed ID: 23963545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk.
    Zhang J; Li M; Feng Z; Chen J; Li C
    J Phys Chem B; 2006 Jan; 110(2):927-35. PubMed ID: 16471625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Dye-Sensitized Solar Cells Efficiency Using Mixed-Phase TiO
    Fan YH; Ho CY; Chang YJ
    Scanning; 2017; 2017():9152973. PubMed ID: 29109828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatase TiO(2) nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells.
    Yu J; Fan J; Lv K
    Nanoscale; 2010 Oct; 2(10):2144-9. PubMed ID: 20852787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced dye-sensitized solar cells performance using anatase TiO2 mesocrystals with the Wulff construction of nearly 100% exposed {101} facets as effective light scattering layer.
    Zhou Y; Wang X; Wang H; Song Y; Fang L; Ye N; Wang L
    Dalton Trans; 2014 Mar; 43(12):4711-9. PubMed ID: 24468963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells.
    Shaikh SF; Mane RS; Min BK; Hwang YJ; Joo OS
    Sci Rep; 2016 Feb; 6():20103. PubMed ID: 26857963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel preparation of anatase TiO2@reduced graphene oxide hybrids for high-performance dye-sensitized solar cells.
    Cheng G; Akhtar MS; Yang OB; Stadler FJ
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6635-42. PubMed ID: 23777569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TiO2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells.
    Pan X; Chen C; Zhu K; Fan Z
    Nanotechnology; 2011 Jun; 22(23):235402. PubMed ID: 21474874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical anatase TiO2 porous nanopillars with high crystallinity and controlled length: an effective candidate for dye-sensitized solar-cells.
    Qu Y; Zhou W; Pan K; Tian C; Ren Z; Dong Y; Fu H
    Phys Chem Chem Phys; 2010 Aug; 12(32):9205-12. PubMed ID: 20623065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Formation of Anatase/Rutile TiO
    He J; Du YE; Bai Y; An J; Cai X; Chen Y; Wang P; Yang X; Feng Q
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31430852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beneficial role of cetyltrimethylammonium bromide in the enhancement of photovoltaic properties of dye-sensitized rutile TiO2 solar cells.
    Byun HY; Vittal R; Kim DY; Kim KJ
    Langmuir; 2004 Aug; 20(16):6853-7. PubMed ID: 15274595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.