These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 19904660)
1. Occupational exposure to cobalt: a population toxicokinetic modeling approach validated by field results challenges the biological exposure index for urinary cobalt. Martin A; Bois FY; Pierre F; Wild P J Occup Environ Hyg; 2010 Jan; 7(1):54-62. PubMed ID: 19904660 [TBL] [Abstract][Full Text] [Related]
2. [The correlation between personal occupational exposure to soluble chromate and urinary chromium content]. Yan L; Jia G; Zhang J; He PP; Wang TC; Zhang N; Liu LZ; Li GR; Wang X; Wang L Zhonghua Yu Fang Yi Xue Za Zhi; 2006 Nov; 40(6):386-9. PubMed ID: 17313736 [TBL] [Abstract][Full Text] [Related]
3. Environmental exposure characterization of fish processing workers. Jeebhay MF; Robins TG; Seixas N; Baatjies R; George DA; Rusford E; Lehrer SB; Lopata AL Ann Occup Hyg; 2005 Jul; 49(5):423-37. PubMed ID: 15705596 [TBL] [Abstract][Full Text] [Related]
4. Assessing isocyanate exposures in polyurethane industry sectors using biological and air monitoring methods. Creely KS; Hughson GW; Cocker J; Jones K Ann Occup Hyg; 2006 Aug; 50(6):609-21. PubMed ID: 16731584 [TBL] [Abstract][Full Text] [Related]
5. Proposal for single and mixture biological exposure limits for sevoflurane and nitrous oxide at low occupational exposure levels. Accorsi A; Valenti S; Barbieri A; Raffi GB; Violante FS Int Arch Occup Environ Health; 2003 Mar; 76(2):129-36. PubMed ID: 12733085 [TBL] [Abstract][Full Text] [Related]
6. Comparison of task-based exposure metrics for an epidemiologic study of isocyanate inhalation exposures among autobody shop workers. Woskie SR; Bello D; Gore RJ; Stowe MH; Eisen EA; Liu Y; Sparer JA; Redlich CA; Cullen MR J Occup Environ Hyg; 2008 Sep; 5(9):588-98. PubMed ID: 18615291 [TBL] [Abstract][Full Text] [Related]
7. Exposure to fuel-oil ash and welding emissions during the overhaul of an oil-fired boiler. Liu Y; Woodin MA; Smith TJ; Herrick RF; Williams PL; Hauser R; Christiani DC J Occup Environ Hyg; 2005 Sep; 2(9):435-43. PubMed ID: 16048845 [TBL] [Abstract][Full Text] [Related]
8. The effect of workload on biological monitoring of occupational exposure to toluene and n-Hexane: contribution of physiologically based toxicokinetic modeling. Sari-Minodier I; Truchon G; Charest-Tardif G; Bérubé A; Tardif R J Occup Environ Hyg; 2009 Jul; 6(7):415-32. PubMed ID: 19384711 [TBL] [Abstract][Full Text] [Related]
9. Exposure to low molecular weight isocyanates and formaldehyde in foundries using hot box core binders. Westberg H; Löfstedt H; Seldén A; Lilja BG; Nayström P Ann Occup Hyg; 2005 Nov; 49(8):719-25. PubMed ID: 16126762 [TBL] [Abstract][Full Text] [Related]
10. An occupational hygiene investigation of exposure to acrylamide and the role for urinary S-carboxyethyl-cysteine (CEC) as a biological marker. Bull PJ; Brooke RK; Cocker J; Jones K; Warren N Ann Occup Hyg; 2005 Nov; 49(8):683-90. PubMed ID: 16141254 [TBL] [Abstract][Full Text] [Related]
11. Trichloroacetic acid in urine as biological exposure equivalent for low exposure concentrations of trichloroethene. Csanády GA; Göen T; Klein D; Drexler H; Filser JG Arch Toxicol; 2010 Nov; 84(11):897-902. PubMed ID: 20414643 [TBL] [Abstract][Full Text] [Related]
12. Task-based lead exposures and work site characteristics of bridge surface preparation and painting contractors. Virji MA; Woskie SR; Pepper LD J Occup Environ Hyg; 2009 Feb; 6(2):99-112. PubMed ID: 19065390 [TBL] [Abstract][Full Text] [Related]
13. Modeling aggregate exposures to glycol ethers from use of commercial floor products. Koontz M; Price P; Hamilton J; Daggett D; Sielken R; Bretzlaff R; Tyler T Int J Toxicol; 2006; 25(2):95-107. PubMed ID: 16597548 [TBL] [Abstract][Full Text] [Related]
14. A field study to assess the long-term sampling feasibility of evacuated canisters and the development of a mathematical model to analyze potential sampling bias. Rossner A; Wick DP J Occup Environ Hyg; 2005 Sep; 2(9):474-80. PubMed ID: 16105798 [TBL] [Abstract][Full Text] [Related]
15. Application of statistical models to estimate the correlation between urinary benzene as biological indicator of exposure and air concentrations determined by personal monitoring. Tolentino D; Zenari E; Dall'Olio M; Ruani G; Gelormini A; Mirone G AIHA J (Fairfax, Va); 2003; 64(5):625-9. PubMed ID: 14521437 [TBL] [Abstract][Full Text] [Related]
16. [Alveolar air analysis for benzene as a biomonitoring index]. Wang YH; Jin XP Zhonghua Yu Fang Yi Xue Za Zhi; 1991 Sep; 25(5):265-8. PubMed ID: 1773666 [TBL] [Abstract][Full Text] [Related]
17. Comparison of exposure assessment methods in occupational exposure to benzene in gasoline filling-station attendants. Carrieri M; Bonfiglio E; Scapellato ML; Maccà I; Tranfo G; Faranda P; Paci E; Bartolucci GB Toxicol Lett; 2006 Apr; 162(2-3):146-52. PubMed ID: 16289653 [TBL] [Abstract][Full Text] [Related]
18. Urinary bromide and breathing zone concentrations of 1-bromopropane from workers exposed to flexible foam spray adhesives. Hanley KW; Petersen M; Curwin BD; Sanderson WT Ann Occup Hyg; 2006 Aug; 50(6):599-607. PubMed ID: 16698849 [TBL] [Abstract][Full Text] [Related]
19. Environmental and biological monitoring of volatile organic compounds in the workplace. Caro J; Gallego M Chemosphere; 2009 Oct; 77(3):426-33. PubMed ID: 19635627 [TBL] [Abstract][Full Text] [Related]
20. Biological monitoring of occupational exposure to arsenic by determining urinary content of inorganic arsenic and its methylated metabolites. Jakubowski M; Trzcinka-Ochocka M; Raźniewska G; Matczak W Int Arch Occup Environ Health; 1998 Sep; 71 Suppl():S29-32. PubMed ID: 9827876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]