BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

713 related articles for article (PubMed ID: 19904910)

  • 1. Noncovalent interactions involving histidine: the effect of charge on pi-pi stacking and T-shaped interactions with the DNA nucleobases.
    Churchill CD; Wetmore SD
    J Phys Chem B; 2009 Dec; 113(49):16046-58. PubMed ID: 19904910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A preliminary investigation of the additivity of pi-pi or pi+-pi stacking and T-shaped interactions between natural or damaged DNA nucleobases and histidine.
    Rutledge LR; Churchill CD; Wetmore SD
    J Phys Chem B; 2010 Mar; 114(9):3355-67. PubMed ID: 20151654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating how discrete water molecules affect protein-DNA π-π and π(+)-π stacking and T-shaped interactions: the case of histidine-adenine dimers.
    Leavens FM; Churchill CD; Wang S; Wetmore SD
    J Phys Chem B; 2011 Sep; 115(37):10990-1003. PubMed ID: 21809837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of extending the computational model on DNA-protein T-shaped interactions: the case of adenine-histidine dimers.
    Rutledge LR; Navarro-Whyte L; Peterson TL; Wetmore SD
    J Phys Chem A; 2011 Nov; 115(45):12646-58. PubMed ID: 21648440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of nucleobase-amino acid stacking interactions utilized by a DNA repair enzyme.
    Rutledge LR; Campbell-Verduyn LS; Hunter KC; Wetmore SD
    J Phys Chem B; 2006 Oct; 110(39):19652-63. PubMed ID: 17004834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the biological backbone on DNA-protein stacking interactions.
    Churchill CD; Navarro-Whyte L; Rutledge LR; Wetmore SD
    Phys Chem Chem Phys; 2009 Dec; 11(45):10657-70. PubMed ID: 20145810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significant strength of charged DNA-protein π-π interactions: a preliminary study of cytosine.
    Wells RA; Kellie JL; Wetmore SD
    J Phys Chem B; 2013 Sep; 117(36):10462-74. PubMed ID: 23991905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in structure, energy, and spectrum between neutral, protonated, and deprotonated phenol dimers: comparison of various density functionals with ab initio theory.
    Kołaski M; Kumar A; Singh NJ; Kim KS
    Phys Chem Chem Phys; 2011 Jan; 13(3):991-1001. PubMed ID: 21063580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the biological backbone on stacking interactions at DNA-protein interfaces: the interplay between the backbone···π and π···π components.
    Churchill CD; Rutledge LR; Wetmore SD
    Phys Chem Chem Phys; 2010 Nov; 12(43):14515-26. PubMed ID: 20927465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational comparison of the stacking interactions between the aromatic amino acids and the natural or (cationic) methylated nucleobases.
    Rutledge LR; Durst HF; Wetmore SD
    Phys Chem Chem Phys; 2008 May; 10(19):2801-12. PubMed ID: 18464997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remarkably Strong T-Shaped Interactions between Aromatic Amino Acids and Adenine: Their Increase upon Nucleobase Methylation and a Comparison to Stacking.
    Rutledge LR; Wetmore SD
    J Chem Theory Comput; 2008 Oct; 4(10):1768-80. PubMed ID: 26620179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How do size-expanded DNA nucleobases enhance duplex stability? Computational analysis of the hydrogen-bonding and stacking ability of xDNA bases.
    McConnell TL; Wetmore SD
    J Phys Chem B; 2007 Mar; 111(11):2999-3009. PubMed ID: 17388411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for Stabilization of DNA/RNA-Protein Complexes Arising from Nucleobase-Amino Acid Stacking and T-Shaped Interactions.
    Rutledge LR; Durst HF; Wetmore SD
    J Chem Theory Comput; 2009 May; 5(5):1400-10. PubMed ID: 26609727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurately characterizing the pi-pi interaction energies of indole-benzene complexes.
    Geng Y; Takatani T; Hohenstein EG; Sherrill CD
    J Phys Chem A; 2010 Mar; 114(10):3576-82. PubMed ID: 20175508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing phenylalanine/adenine pi-stacking interactions in protein complexes with explicitly correlated and CCSD(T) computations.
    Copeland KL; Anderson JA; Farley AR; Cox JR; Tschumper GS
    J Phys Chem B; 2008 Nov; 112(45):14291-5. PubMed ID: 18922031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational characterization of the hydrogen-bonding and stacking interactions of hypoxanthine.
    Rutledge LR; Wheaton CA; Wetmore SD
    Phys Chem Chem Phys; 2007 Jan; 9(4):497-509. PubMed ID: 17216066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the effects of heterogeneity on delocalized pi...pi interaction energies.
    Bates DM; Anderson JA; Oloyede P; Tschumper GS
    Phys Chem Chem Phys; 2008 May; 10(19):2775-9. PubMed ID: 18464993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.