These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 19905055)

  • 1. Free-running period of neurons in the suprachiasmatic nucleus: Its dependence on the distribution of neuronal coupling strengths.
    Gu C; Wang J; Liu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):030904. PubMed ID: 19905055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of dispersed coupling strength on the free running periods of circadian rhythms.
    Gu C; Rohling JH; Liang X; Yang H
    Phys Rev E; 2016 Mar; 93(3):032414. PubMed ID: 27078397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entrainment range of nonidentical circadian oscillators by a light-dark cycle.
    Gu C; Xu J; Liu Z; Rohling JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022702. PubMed ID: 24032859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of phase splitting in two coupled groups of suprachiasmatic-nucleus neurons.
    Gu C; Wang J; Wang J; Liu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046224. PubMed ID: 21599287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive coupling between neurons widens the entrainment range of the suprachiasmatic nucleus.
    Zheng W; Gu C; Yang H; Wang H; Rohling JHT
    Phys Rev E; 2024 Sep; 110(3-1):034212. PubMed ID: 39425370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase differences between SCN neurons and their role in photoperiodic encoding; a simulation of ensemble patterns using recorded single unit electrical activity patterns.
    Rohling J; Meijer JH; VanderLeest HT; Admiraal J
    J Physiol Paris; 2006; 100(5-6):261-70. PubMed ID: 17628455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clustering predicted by an electrophysiological model of the suprachiasmatic nucleus.
    Diekman CO; Forger DB
    J Biol Rhythms; 2009 Aug; 24(4):322-33. PubMed ID: 19625734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional circadian period difference in the suprachiasmatic nucleus of the mammalian circadian center.
    Koinuma S; Asakawa T; Nagano M; Furukawa K; Sujino M; Masumoto KH; Nakajima Y; Hashimoto S; Yagita K; Shigeyoshi Y
    Eur J Neurosci; 2013 Sep; 38(6):2832-41. PubMed ID: 23869693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Number of arginine-vasopressin neurons in the suprachiasmatic nuclei is not related to level or circadian characteristics of wheel-running activity in house mice.
    Hochstetler KJ; Garland T; Swallow JG; Carter PA; Bult-Ito A
    Behav Genet; 2004 Jan; 34(1):131-6. PubMed ID: 14739703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase organization of circadian oscillators in extended gate and oscillator models.
    Zhao G
    J Theor Biol; 2010 May; 264(2):367-76. PubMed ID: 20144621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efferent signals of the suprachiasmatic nucleus.
    Silver R; LeSauter J
    J Biol Rhythms; 1993; 8 Suppl():S89-92. PubMed ID: 8274767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system.
    Davidson AJ; Castanon-Cervantes O; Leise TL; Molyneux PC; Harrington ME
    Eur J Neurosci; 2009 Jan; 29(1):171-80. PubMed ID: 19032592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm.
    Mieda M; Ono D; Hasegawa E; Okamoto H; Honma K; Honma S; Sakurai T
    Neuron; 2015 Mar; 85(5):1103-16. PubMed ID: 25741730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian regulation of sleep-wake behaviour in nocturnal rats requires multiple signals from suprachiasmatic nucleus.
    Fleshner M; Booth V; Forger DB; Diniz Behn CG
    Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1952):3855-83. PubMed ID: 21893532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entrainment of the suprachiasmatic nucleus network by a light-dark cycle.
    Xu J; Gu C; Pumir A; Garnier N; Liu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041903. PubMed ID: 23214611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The coupling features of electrical synapses modulate neuronal synchrony in hypothalamic superachiasmatic nucleus.
    Wang MH; Chen N; Wang JH
    Brain Res; 2014 Mar; 1550():9-17. PubMed ID: 24440632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of nerve growth factor upon the neuropeptide content of the suprachiasmatic nucleus of rats withdrawn from ethanol are mediated by the nucleus basalis magnocellularis.
    Paula-Barbosa MM; Pereira PA; Cardoso A; Madeira MD; Cadete-Leite A
    J Neurocytol; 2004 Jul; 33(4):453-63. PubMed ID: 15520530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The suprachiasmatic nucleus: a clock of multiple components.
    Lee HS; Billings HJ; Lehman MN
    J Biol Rhythms; 2003 Dec; 18(6):435-49. PubMed ID: 14667145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.