These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19905073)

  • 1. Theory of single-file multiparticle diffusion in narrow pores.
    Kharkyanen VN; Yesylevskyy SO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031118. PubMed ID: 19905073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approximation of super-ions for single-file diffusion of multiple ions through narrow pores.
    Kharkyanen VN; Yesylevskyy SO; Berezetskaya NM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051103. PubMed ID: 21230433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unified modeling of conductance kinetics for low- and high-conductance potassium ion channels.
    Tolokh IS; Goldman S; Gray CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011902. PubMed ID: 16907122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incidence of partial charges on ion selectivity in potassium channels.
    Huetz P; Boiteux C; Compoint M; Ramseyer C; Girardet C
    J Chem Phys; 2006 Jan; 124(4):044703. PubMed ID: 16460196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate theory models for ion transport through rigid pores. III. Continuum vs discrete models in single file diffusion.
    Stephan W; Kleutsch B; Frehland E
    J Theor Biol; 1983 Nov; 105(2):287-310. PubMed ID: 6317988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of single-file noise.
    Frehland E; Stephan W
    Biochim Biophys Acta; 1979 May; 553(2):326-41. PubMed ID: 444521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Michaelis-Menten kinetics model for conductance of low-conductance potassium ion channels.
    Tolokh IS; Tolokh II; Cho HC; D'Avanzo N; Backx PH; Goldman S; Gray CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021912. PubMed ID: 15783357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the charge profile in the KcsA selectivity filter using ab initio calculations and molecular dynamics simulations.
    Kraszewski S; Boiteux C; Ramseyer C; Girardet C
    Phys Chem Chem Phys; 2009 Oct; 11(38):8606-13. PubMed ID: 19774294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of ion conduction through the K+ channel.
    Bernèche S; Roux B
    Nature; 2001 Nov; 414(6859):73-7. PubMed ID: 11689945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics of the KcsA K(+) channel in a bilayer membrane.
    Bernèche S; Roux B
    Biophys J; 2000 Jun; 78(6):2900-17. PubMed ID: 10827971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the dielectric constant of the channel protein and pore.
    Ng JA; Vora T; Krishnamurthy V; Chung SH
    Eur Biophys J; 2008 Feb; 37(2):213-22. PubMed ID: 17876574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast in silico simulation of ion flux through the large-pore channel proteins.
    Bransburg-Zabary S; Nachliel E; Gutman M
    Biophys J; 2002 Dec; 83(6):3001-11. PubMed ID: 12496073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium ions in the cavity of a KcsA channel model.
    Yao Z; Qiao B; Olvera de la Cruz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062712. PubMed ID: 24483491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations.
    Chung SH; Allen TW; Kuyucak S
    Biophys J; 2002 Feb; 82(2):628-45. PubMed ID: 11806907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. External TEA block of shaker K+ channels is coupled to the movement of K+ ions within the selectivity filter.
    Thompson J; Begenisich T
    J Gen Physiol; 2003 Aug; 122(2):239-46. PubMed ID: 12885878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of K+ vs Na+ selectivity in potassium channels.
    Dudev T; Lim C
    J Am Chem Soc; 2009 Jun; 131(23):8092-101. PubMed ID: 19456150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining molecular dynamics and an electrodiffusion model to calculate ion channel conductance.
    Wilson MA; Nguyen TH; Pohorille A
    J Chem Phys; 2014 Dec; 141(22):22D519. PubMed ID: 25494790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion currents through pores. The roles of diffusion and external access steps in determining the currents through narrow pores.
    Hladky SB
    Biophys J; 1984 Sep; 46(3):293-7. PubMed ID: 6207866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands.
    Noskov SY; Bernèche S; Roux B
    Nature; 2004 Oct; 431(7010):830-4. PubMed ID: 15483608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeation of ions across the potassium channel: Brownian dynamics studies.
    Chung SH; Allen TW; Hoyles M; Kuyucak S
    Biophys J; 1999 Nov; 77(5):2517-33. PubMed ID: 10545353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.