These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19905104)

  • 1. Measurement of granular entropy.
    McNamara S; Richard P; de Richter SK; Le Caër G; Delannay R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031301. PubMed ID: 19905104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical calculation of granular entropy.
    Asenjo D; Paillusson F; Frenkel D
    Phys Rev Lett; 2014 Mar; 112(9):098002. PubMed ID: 24655280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voronoï cell-size distribution and Edwards' compactivity of the parking lot model.
    Hernández K; Reyes LI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):062301. PubMed ID: 18643320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Mechanical analog of temperature for the description of force distribution in static granular packings".
    Metzger PT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):053301; discussion 053302. PubMed ID: 15244867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of Gamma distributions in granular materials and packing models.
    Aste T; Di Matteo T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021309. PubMed ID: 18352024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turning intractable counting into sampling: Computing the configurational entropy of three-dimensional jammed packings.
    Martiniani S; Schrenk KJ; Stevenson JD; Wales DJ; Frenkel D
    Phys Rev E; 2016 Jan; 93(1):012906. PubMed ID: 26871142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voronoi cell volume distribution and configurational entropy of hard-spheres.
    Kumar VS; Kumaran V
    J Chem Phys; 2005 Sep; 123(11):114501. PubMed ID: 16392567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the configurational temperature of a binary disc packing.
    Zhao SC; Schröter M
    Soft Matter; 2014 Jun; 10(23):4208-16. PubMed ID: 24781279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental structural characteristics of planar granular assemblies: Self-organization and scaling away friction and initial state.
    Matsushima T; Blumenfeld R
    Phys Rev E; 2017 Mar; 95(3-1):032905. PubMed ID: 28415361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Devising a protocol-related statistical mechanics framework for granular materials.
    Paillusson F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012204. PubMed ID: 25679616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Test of the Edwards Volume Ensemble for Tapped Granular Packings.
    Yuan Y; Xing Y; Zheng J; Li Z; Yuan H; Zhang S; Zeng Z; Xia C; Tong H; Kob W; Zhang J; Wang Y
    Phys Rev Lett; 2021 Jul; 127(1):018002. PubMed ID: 34270306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of maximally random jammed sphere packings: Voronoi correlation functions.
    Klatt MA; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052120. PubMed ID: 25493753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol-independent granular temperature supported by numerical simulations.
    Becker V; Kassner K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052201. PubMed ID: 26651683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Configurational entropy of binary hard-disk glasses: nonexistence of an ideal glass transition.
    Donev A; Stillinger FH; Torquato S
    J Chem Phys; 2007 Sep; 127(12):124509. PubMed ID: 17902923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Gaussian probability distribution functions from maximum-entropy-principle considerations.
    Sattin F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):032102. PubMed ID: 14524812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of non-fcc hard-sphere solids predicted by density functional theory.
    Lutsko JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021121. PubMed ID: 17025407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edwards entropy and compactivity in a model of granular matter.
    Bowles RK; Ashwin SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031302. PubMed ID: 21517489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Edwards thermodynamics of the jamming transition for frictionless packings: ergodicity test and role of angoricity and compactivity.
    Wang K; Song C; Wang P; Makse HA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011305. PubMed ID: 23005409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental validation of a micromechanically based compaction law for mixtures of soft and hard grains.
    Cárdenas-Barrantes M; Barés J; Renouf M; Azéma É
    Phys Rev E; 2022 Aug; 106(2):L022901. PubMed ID: 36109894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluctuation-dissipation relation and the Edwards entropy for a glassy granular compaction model.
    Depken M; Stinchcombe R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):065102. PubMed ID: 16089799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.