BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 19905167)

  • 21. Dual-mode spiral vortices.
    Mau Y; Hagberg A; Meron E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):065203. PubMed ID: 20365220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transverse instabilities in chemical Turing patterns of stripes.
    Peña B; Pérez-García C; Sanz-Anchelergues A; Míguez DG; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056206. PubMed ID: 14682870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Square Turing patterns in reaction-diffusion systems with coupled layers.
    Li J; Wang H; Ouyang Q
    Chaos; 2014 Jun; 24(2):023115. PubMed ID: 24985429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stable squares and other oscillatory turing patterns in a reaction-diffusion model.
    Yang L; Zhabotinsky AM; Epstein IR
    Phys Rev Lett; 2004 May; 92(19):198303. PubMed ID: 15169455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial periodic forcing of Turing structures.
    Dolnik M; Berenstein I; Zhabotinsky AM; Epstein IR
    Phys Rev Lett; 2001 Dec; 87(23):238301. PubMed ID: 11736479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resonant and nonresonant patterns in forced oscillators.
    Marts B; Hagberg A; Meron E; Lin AL
    Chaos; 2006 Sep; 16(3):037113. PubMed ID: 17014247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with square spatial periodic forcing.
    Feldman D; Nagao R; Bánsági T; Epstein IR; Dolnik M
    Phys Chem Chem Phys; 2012 May; 14(18):6577-83. PubMed ID: 22456449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time-delay-induced instabilities in reaction-diffusion systems.
    Sen S; Ghosh P; Riaz SS; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046212. PubMed ID: 19905420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system.
    Rodrigues LA; Mistro DC; Petrovskii S
    Bull Math Biol; 2011 Aug; 73(8):1812-40. PubMed ID: 20972714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Turing pattern formation in coupled reaction-diffusion system with distributed delays.
    Ji L; Li QS
    J Chem Phys; 2005 Sep; 123(9):94509. PubMed ID: 16164355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model.
    Xie Y; Chen L; Kang YM; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061921. PubMed ID: 18643314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Segmented waves from a spatiotemporal transverse wave instability.
    Yang L; Berenstein I; Epstein IR
    Phys Rev Lett; 2005 Jul; 95(3):038303. PubMed ID: 16090777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selection of flow-distributed oscillation and Turing patterns by boundary forcing in a linearly growing, oscillating medium.
    Míguez DG; McGraw P; Muñuzuri AP; Menzinger M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026208. PubMed ID: 19792232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-driven coherence resonance and stochastic resonance in a thermochemical system.
    Lemarchand A; Gorecki J; Gorecki A; Nowakowski B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022916. PubMed ID: 25353554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of Turing patterns in a spatially extended chlorine-iodine-malonic-acid system with a local concentration-dependent diffusivity.
    Li WS; Hu WY; Pang YC; Liu TR; Zhong WR; Shao YZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066132. PubMed ID: 23005187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Locking of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with one-dimensional spatial periodic forcing.
    Dolnik M; Bánsági T; Ansari S; Valent I; Epstein IR
    Phys Chem Chem Phys; 2011 Jul; 13(27):12578-83. PubMed ID: 21666931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic mechanism of photochemical induction of turing superlattices in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.
    Berenstein I; Yang L; Dolnik M; Zhabotinsky AM; Epstein IR
    J Phys Chem A; 2005 Jun; 109(24):5382-7. PubMed ID: 16839063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional patterns in the Lengyel-Rabai-Epstein model of the chlorine dioxide-iodine-malonic acid reaction.
    Moore PK; Horsthemke W
    Chaos; 2009 Dec; 19(4):043116. PubMed ID: 20059212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Target Turing patterns and growth dynamics in the chlorine dioxide-iodine-malonic acid reaction.
    Preska Steinberg A; Epstein IR; Dolnik M
    J Phys Chem A; 2014 Apr; 118(13):2393-400. PubMed ID: 24601764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Turing-Hopf patterns on growing domains: The torus and the sphere.
    Sánchez-Garduño F; Krause AL; Castillo JA; Padilla P
    J Theor Biol; 2019 Nov; 481():136-150. PubMed ID: 30266461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.