These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19905199)

  • 1. Renormalization group approach to oscillator synchronization.
    Kogan O; Rogers JL; Cross MC; Refael G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036206. PubMed ID: 19905199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universality in the one-dimensional chain of phase-coupled oscillators.
    Lee TE; Refael G; Cross MC; Kogan O; Rogers JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046210. PubMed ID: 19905418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the critical coupling for oscillators in a ring.
    El-Nashar HF; Cerdeira HA
    Chaos; 2009 Sep; 19(3):033127. PubMed ID: 19792007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-shifted synchronization of chaotic oscillator chains without explicit coupling delays.
    Blakely JN; Stahl MT; Corron NJ
    Chaos; 2009 Dec; 19(4):043117. PubMed ID: 20059213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale dynamics in communities of phase oscillators.
    Anderson D; Tenzer A; Barlev G; Girvan M; Antonsen TM; Ott E
    Chaos; 2012 Mar; 22(1):013102. PubMed ID: 22462978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization properties of network motifs: influence of coupling delay and symmetry.
    D'Huys O; Vicente R; Erneux T; Danckaert J; Fischer I
    Chaos; 2008 Sep; 18(3):037116. PubMed ID: 19045490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impulsive synchronization of coupled dynamical networks with nonidentical Duffing oscillators and coupling delays.
    Wang Z; Duan Z; Cao J
    Chaos; 2012 Mar; 22(1):013140. PubMed ID: 22463016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generic behavior of master-stability functions in coupled nonlinear dynamical systems.
    Huang L; Chen Q; Lai YC; Pecora LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036204. PubMed ID: 19905197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization in small-world networks.
    Wu Y; Shang Y; Chen M; Zhou C; Kurths J
    Chaos; 2008 Sep; 18(3):037111. PubMed ID: 19045485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low dimensional behavior of large systems of globally coupled oscillators.
    Ott E; Antonsen TM
    Chaos; 2008 Sep; 18(3):037113. PubMed ID: 19045487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-organization in predominantly feedforward oscillator chains.
    Mintchev SM; Young LS
    Chaos; 2009 Dec; 19(4):043131. PubMed ID: 20059227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal weighted networks of phase oscillators for synchronization.
    Tanaka T; Aoyagi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046210. PubMed ID: 18999511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations.
    Peron TK; Rodrigues FA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056108. PubMed ID: 23214844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forced synchronization of a self-sustained chaotic oscillator.
    González Salas JS; Campos Cantón E; Ordaz Salazar FC; Campos Cantón I
    Chaos; 2008 Jun; 18(2):023136. PubMed ID: 18601502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relaying phase synchrony in chaotic oscillator chains.
    Agrawal M; Prasad A; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056205. PubMed ID: 22181482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traveling waves and compactons in phase oscillator lattices.
    Ahnert K; Pikovsky A
    Chaos; 2008 Sep; 18(3):037118. PubMed ID: 19045492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronization of pulse-coupled oscillators with a refractory period and frequency distribution for a wireless sensor network.
    Konishi K; Kokame H
    Chaos; 2008 Sep; 18(3):033132. PubMed ID: 19045470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Onset of chaotic phase synchronization in complex networks of coupled heterogeneous oscillators.
    Ricci F; Tonelli R; Huang L; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):027201. PubMed ID: 23005889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cluster synchronization in oscillatory networks.
    Belykh VN; Osipov GV; Petrov VS; Suykens JA; Vandewalle J
    Chaos; 2008 Sep; 18(3):037106. PubMed ID: 19045480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete chaotic synchronization and exclusion of mutual Pyragas control in two delay-coupled Rössler-type oscillators.
    Jüngling T; Benner H; Shirahama H; Fukushima K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056208. PubMed ID: 22181485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.