These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 19905213)

  • 1. Steady-state, simultaneous two-phase flow in porous media: an experimental study.
    Tallakstad KT; Løvoll G; Knudsen HA; Ramstad T; Flekkøy EG; Måløy KJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036308. PubMed ID: 19905213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state two-phase flow in porous media: statistics and transport properties.
    Tallakstad KT; Knudsen HA; Ramstad T; Løvoll G; Måløy KJ; Toussaint R; Flekkøy EG
    Phys Rev Lett; 2009 Feb; 102(7):074502. PubMed ID: 19257676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cluster evolution in steady-state two-phase flow in porous media.
    Ramstad T; Hansen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026306. PubMed ID: 16605453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. History effects on nonwetting fluid residuals during desaturation flow through disordered porous media.
    Chevalier T; Salin D; Talon L; Yiotis AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043015. PubMed ID: 25974588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. History independence of steady state in simultaneous two-phase flow through two-dimensional porous media.
    Erpelding M; Sinha S; Tallakstad KT; Hansen A; Flekkøy EG; Måløy KJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053004. PubMed ID: 24329348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics and stability of two-potential flows in the porous media.
    Markicevic B; Bijeljic B; Navaz HK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056324. PubMed ID: 22181515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous dynamics of capillary rise in porous media.
    Shikhmurzaev YD; Sprittles JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016306. PubMed ID: 23005524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth activity during fingering in a porous Hele-Shaw cell.
    Løvoll G; Méheust Y; Toussaint R; Schmittbuhl J; Måløy KJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026301. PubMed ID: 15447582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaporation and capillary coupling across vertical textural contrasts in porous media.
    Lehmann P; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046318. PubMed ID: 19905447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillation-induced displacement patterns in a two-dimensional porous medium: a lattice Boltzmann study.
    Aursjø O; Knudsen HA; Flekkøy EG; Måløy KJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026305. PubMed ID: 20866903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horizontal flow and capillarity-driven redistribution in porous media.
    Doster F; Hönig O; Hilfer R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016317. PubMed ID: 23005535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local wettability reversal during steady-state two-phase flow in porous media.
    Sinha S; Grøva M; Ødegården TB; Skjetne E; Hansen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):037303. PubMed ID: 22060540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic fingering in rotating Hele-Shaw flows.
    Carvalho GD; Gadêlha H; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053019. PubMed ID: 25353892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of wettability and saturation on liquid-liquid interfacial area in porous media.
    Jain V; Bryant S; Sharma M
    Environ Sci Technol; 2003 Feb; 37(3):584-91. PubMed ID: 12630476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roughness and intermittent dynamics of imbibition fronts due to capillary and permeability disorder.
    Planet R; Santucci S; Ortín J
    J Contam Hydrol; 2011 Mar; 120-121():157-69. PubMed ID: 21106273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometry-induced phase transition in fluids: capillary prewetting.
    Yatsyshin P; Savva N; Kalliadasis S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):020402. PubMed ID: 23496446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic roughening in two-phase fluid flow through a random Hele-Shaw cell.
    Pauné E; Casademunt J
    Phys Rev Lett; 2003 Apr; 90(14):144504. PubMed ID: 12731922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.