These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19905217)

  • 1. Flow non-normality-induced transient growth in superposed Newtonian and non-Newtonian fluid layers.
    Camporeale C; Gatti F; Ridolfi L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036312. PubMed ID: 19905217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastically driven surface plumes in rimming flow of a non-Newtonian fluid.
    Seiden G; Steinberg V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056320. PubMed ID: 23214888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irreversibility and chaos: role of lubrication interactions in sheared suspensions.
    Metzger B; Pham P; Butler JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052304. PubMed ID: 23767537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern formation induced by a differential shear flow.
    Stucchi L; Vasquez DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):024902. PubMed ID: 23496644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms.
    Fisher C; Rossmann JS
    J Biomech Eng; 2009 Sep; 131(9):091004. PubMed ID: 19725693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CFD simulation of non-Newtonian fluid flow in anaerobic digesters.
    Wu B; Chen S
    Biotechnol Bioeng; 2008 Feb; 99(3):700-11. PubMed ID: 17705227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breaking of non-Newtonian character in flows through a porous medium.
    Chevalier T; Rodts S; Chateau X; Chevalier C; Coussot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023002. PubMed ID: 25353566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homologous onset of double layer convection.
    Busse FH; Petry M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046316. PubMed ID: 19905445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation.
    Bleyer J; Coussot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063018. PubMed ID: 25019890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water waves as a spatial dynamical system; infinite depth case.
    Barrandon M; Iooss G
    Chaos; 2005 Sep; 15(3):37112. PubMed ID: 16253007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization of two bubble trains in a viscous fluid: experiment and numerical simulation.
    Pereira FA; Colli E; Sartorelli JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022917. PubMed ID: 23496601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.
    Liu G; Jayathilake PG; Khoo BC
    Ultrasonics; 2014 Feb; 54(2):576-85. PubMed ID: 24070825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of the Saffman-Taylor instability: a curvature-dependent surface tension approach.
    Rocha FM; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013017. PubMed ID: 23410436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids.
    Etemad SG; Thibault J; Hashemabadi SH
    ISA Trans; 2003 Oct; 42(4):505-12. PubMed ID: 14582876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of the kinematic dynamo onset of spherical Couette flows with smooth and rough boundaries.
    Finke K; Tilgner A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016310. PubMed ID: 23005528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of non-Newtonian fluids in annular ducts with finite aspect ratio using lattice Boltzmann method.
    Khali S; Nebbali R; Ameziani DE; Bouhadef K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053002. PubMed ID: 23767615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonmodal stability in Hagen-Poiseuille flow of a shear thinning fluid.
    Liu R; Liu QS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066318. PubMed ID: 23005217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation.
    Iooss G; Lombardi E; Sun SM
    Philos Trans A Math Phys Eng Sci; 2002 Oct; 360(1799):2245-336. PubMed ID: 12804234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.