These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 19905296)

  • 1. WKB theory of epidemic fade-out in stochastic populations.
    Meerson B; Sasorov PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041130. PubMed ID: 19905296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the probability of epidemic fade-out from multiple outbreak data.
    Alahakoon P; McCaw JM; Taylor PG
    Epidemics; 2022 Mar; 38():100539. PubMed ID: 35093850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extinction of oscillating populations.
    Smith NR; Meerson B
    Phys Rev E; 2016 Mar; 93(3):032109. PubMed ID: 27078294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extinction thresholds in deterministic and stochastic epidemic models.
    Allen LJ; Lahodny GE
    J Biol Dyn; 2012; 6():590-611. PubMed ID: 22873607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-stage model for the SIR outbreak: accounting for the discrete and stochastic nature of the epidemic at the initial contamination stage.
    Sazonov I; Kelbert M; Gravenor MB
    Math Biosci; 2011 Dec; 234(2):108-17. PubMed ID: 21968464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semi-stochastic model for Salmonella infection in a multi-group herd.
    Xiao Y; Clancy D; French NP; Bowers RG
    Math Biosci; 2006 Apr; 200(2):214-33. PubMed ID: 16529775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stochastic mathematical model of the within-herd transmission dynamics of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): fade-out and persistence.
    Evans CM; Medley GF; Creasey SJ; Green LE
    Prev Vet Med; 2010 Mar; 93(4):248-57. PubMed ID: 20004990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extinction of metastable stochastic populations.
    Assaf M; Meerson B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021116. PubMed ID: 20365539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extinction of an infectious disease: a large fluctuation in a nonequilibrium system.
    Kamenev A; Meerson B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061107. PubMed ID: 18643217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and control of pre-extinction dynamics in stochastic populations.
    Nieddu G; Billings L; Forgoston E
    Bull Math Biol; 2014 Dec; 76(12):3122-37. PubMed ID: 25424592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation.
    Alarcón T
    J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Outbreak properties of epidemic models: the roles of temporal forcing and stochasticity on pathogen invasion dynamics.
    Parham PE; Michael E
    J Theor Biol; 2011 Feb; 271(1):1-9. PubMed ID: 21094169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probability of a disease outbreak in stochastic multipatch epidemic models.
    Lahodny GE; Allen LJ
    Bull Math Biol; 2013 Jul; 75(7):1157-80. PubMed ID: 23666483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of disease dispersal and host clustering on the epidemic threshold in plants.
    Brown DH; Bolker BM
    Bull Math Biol; 2004 Mar; 66(2):341-71. PubMed ID: 14871569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of a stochastic SIR epidemic on a random network incorporating household structure.
    Ball F; Sirl D; Trapman P
    Math Biosci; 2010 Apr; 224(2):53-73. PubMed ID: 20005881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extinction rates of established spatial populations.
    Meerson B; Sasorov PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011129. PubMed ID: 21405683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The basic reproduction number and the probability of extinction for a dynamic epidemic model.
    Neal P
    Math Biosci; 2012 Mar; 236(1):31-5. PubMed ID: 22269870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A scaling analysis of measles epidemics in a small population.
    Rhodes CJ; Anderson RM
    Philos Trans R Soc Lond B Biol Sci; 1996 Dec; 351(1348):1679-88. PubMed ID: 9004320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic analysis of epidemics on adaptive time varying networks.
    Kotnis B; Kuri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062810. PubMed ID: 23848732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic switching in slow-fast systems: a large-fluctuation approach.
    Heckman CR; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022919. PubMed ID: 25353557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.