These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19905350)

  • 1. Effects of fluid flow on the oligonucleotide folding in single-walled carbon nanotubes.
    Lim MC; Zhong ZW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041915. PubMed ID: 19905350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics study on DNA oligonucleotide translocation through carbon nanotubes.
    Pei QX; Lim CG; Cheng Y; Gao H
    J Chem Phys; 2008 Sep; 129(12):125101. PubMed ID: 19045062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2013 Mar; 138(12):124701. PubMed ID: 23556736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control performance and biomembrane disturbance of carbon nanotube artificial water channels by nitrogen-doping.
    Yang Y; Li X; Jiang J; Du H; Zhao L; Zhao Y
    ACS Nano; 2010 Oct; 4(10):5755-62. PubMed ID: 20919730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.
    Shen JW; Wu T; Wang Q; Kang Y; Chen X
    Chemphyschem; 2009 Jun; 10(8):1260-9. PubMed ID: 19353602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nanochannel dimension on the transport of water molecules.
    Su J; Guo H
    J Phys Chem B; 2012 May; 116(20):5925-32. PubMed ID: 22448756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2012 Jul; 137(4):044102. PubMed ID: 22852592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling water flow inside carbon nanotube with lipid membranes.
    Feng JW; Ding HM; Ma YQ
    J Chem Phys; 2014 Sep; 141(9):094901. PubMed ID: 25194388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does water-nanotube interaction influence water flow through the nanochannel?
    Li X; Shi Y; Yang Y; Du H; Zhou R; Zhao Y
    J Chem Phys; 2012 May; 136(17):175101. PubMed ID: 22583266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water.
    Martin W; Zhu W; Krilov G
    J Phys Chem B; 2008 Dec; 112(50):16076-89. PubMed ID: 19367836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations.
    Wu K; Zhou B; Xiu P; Qi W; Wan R; Fang H
    J Chem Phys; 2010 Nov; 133(20):204702. PubMed ID: 21133447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pumping of confined water in carbon nanotubes by rotation-translation coupling.
    Joseph S; Aluru NR
    Phys Rev Lett; 2008 Aug; 101(6):064502. PubMed ID: 18764459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrating-charge-driven water pump controlled by the deformation of the carbon nanotube.
    Zhou X; Wu F; Kou J; Nie X; Liu Y; Lu H
    J Phys Chem B; 2013 Oct; 117(39):11681-6. PubMed ID: 23978001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the position of constriction on water permeation across a single-walled carbon nanotube.
    Wu L; Wu F; Kou J; Lu H; Liu Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061913. PubMed ID: 21797409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal effect on the dynamic infiltration of water into single-walled carbon nanotubes.
    Zhao J; Liu L; Culligan PJ; Chen X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061206. PubMed ID: 20365160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating water transport through a charged SWCNT: a molecular dynamics simulation.
    Lu D
    Phys Chem Chem Phys; 2013 Sep; 15(34):14447-57. PubMed ID: 23884179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oscillatory characteristics of a 2C60/CNT oscillator system.
    Wang X; Xin H; Leonard JN; Chen G; Chwang AT; Jiang Q
    J Nanosci Nanotechnol; 2007; 7(4-5):1512-7. PubMed ID: 17450919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peculiarities of homooligonucleotides wrapping around carbon nanotubes: molecular dynamics modeling.
    Karachevtsev MV; Karachevtsev VA
    J Phys Chem B; 2011 Jul; 115(29):9271-9. PubMed ID: 21682290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of water entry in hydrophobic channels of carbon nanotubes.
    Kumar H; Mukherjee B; Lin ST; Dasgupta C; Sood AK; Maiti PK
    J Chem Phys; 2011 Mar; 134(12):124105. PubMed ID: 21456643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulations of water transport through carbon nanotubes: how different water models influence the conduction rate.
    Liu L; Patey GN
    J Chem Phys; 2014 Nov; 141(18):18C518. PubMed ID: 25399183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.