BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19905457)

  • 1. Growth rate and the cutoff wavelength of the Darrieus-Landau instability in laser ablation.
    Modestov M; Bychkov V; Valiev D; Marklund M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046403. PubMed ID: 19905457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of the Darrieus-Landau instability for strongly corrugated turbulent flames.
    Bychkov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066304. PubMed ID: 14754312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the Darrieus-Landau instability on turbulent flame velocity.
    Zaytsev M; Bychkov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026310. PubMed ID: 12241288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical studies of flames in wide tubes: stability limits of curved stationary flames.
    Travnikov OY; Bychkov VV; Liberman MA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):468-74. PubMed ID: 11046286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation.
    Creta F; Lamioni R; Lapenna PE; Troiani G
    Phys Rev E; 2016 Nov; 94(5-1):053102. PubMed ID: 27967046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal flame structure due to the hydrodynamic Darrieus-Landau instability.
    Yu R; Bai XS; Bychkov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063028. PubMed ID: 26764824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speedup of doping fronts in organic semiconductors through plasma instability.
    Bychkov V; Matyba P; Akkerman V; Modestov M; Valiev D; Brodin G; Law CK; Marklund M; Edman L
    Phys Rev Lett; 2011 Jul; 107(1):016103. PubMed ID: 21797554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shapes and speeds of steady forced premixed flames.
    Joulin G; Denet B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063001. PubMed ID: 25019873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability.
    Chaudhuri S; Akkerman V; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026322. PubMed ID: 21929105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro investigation of wavelength-dependent tissue ablation: laser prostatectomy between 532 nm and 2.01 microm.
    Kang HW; Kim J; Peng YS
    Lasers Surg Med; 2010 Mar; 42(3):237-44. PubMed ID: 20333741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymptotic approach to combustion instability.
    Wu X
    Philos Trans A Math Phys Eng Sci; 2005 May; 363(1830):1247-59. PubMed ID: 16105784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulated thermal Rayleigh scattering in optical fibers.
    Dong L
    Opt Express; 2013 Feb; 21(3):2642-56. PubMed ID: 23481720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulational instability in a purely nonlinear coupled complex Ginzburg-Landau equations through a nonlinear discrete transmission line.
    Ndzana F; Mohamadou A; Kofané TC
    Chaos; 2008 Dec; 18(4):043121. PubMed ID: 19123631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of intensity clamping on laser ablation by intense femtosecond laser pulses.
    Xu ZJ; Liu W; Zhang N; Wang MW; Zhu XN
    Opt Express; 2008 Mar; 16(6):3604-9. PubMed ID: 18542453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical study of the effect of optical properties in laser ablation of tissue.
    Rastegar S; Motamedi M; Welch AJ; Hayes LJ
    IEEE Trans Biomed Eng; 1989 Dec; 36(12):1180-7. PubMed ID: 2606493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CW laser ablation velocities as a function of absorption in an experimental one-dimensional tissue model.
    Gijsbers GH; Selten FM; van Gemert MJ
    Lasers Surg Med; 1991; 11(3):287-96. PubMed ID: 1861568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental observation of different soliton types in a net-normal group-dispersion fiber laser.
    Feng Z; Rong Q; Qiao X; Shao Z; Su D
    Appl Opt; 2014 Sep; 53(27):6237-42. PubMed ID: 25322103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heating characteristics of antenna arrays used in microwave ablation: A theoretical parametric study.
    Karampatzakis A; Kühn S; Tsanidis G; Neufeld E; Samaras T; Kuster N
    Comput Biol Med; 2013 Oct; 43(10):1321-7. PubMed ID: 24034722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-lasers assisted ablation: a method for enhancing conventional laser ablation of materials.
    Neev J; Lee JP
    Lasers Surg Med; 1996; 19(2):130-4. PubMed ID: 8887914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D volume-ablation rate and thermal side effects with the Er:YAG and Nd:YAG laser.
    Mehl A; Kremers L; Salzmann K; Hickel R
    Dent Mater; 1997 Jul; 13(4):246-51. PubMed ID: 11696904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.