These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19905481)

  • 1. Parquet approximation for the 4x4 Hubbard cluster.
    Yang SX; Fotso H; Liu J; Maier TA; Tomko K; D'Azevedo EF; Scalettar RT; Pruschke T; Jarrell M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046706. PubMed ID: 19905481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical correlations in multiorbital Hubbard models: fluctuation exchange approximations.
    Drchal V; Janiš V; Kudrnovský J; Oudovenko VS; Dai X; Haule K; Kotliar G
    J Phys Condens Matter; 2005 Jan; 17(1):61-74. PubMed ID: 21690669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solving the parquet equations for the Hubbard model beyond weak coupling.
    Tam KM; Fotso H; Yang SX; Lee TW; Moreno J; Ramanujam J; Jarrell M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013311. PubMed ID: 23410464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The plain and simple parquet approximation: single-and multi-boson exchange in the two-dimensional Hubbard model.
    Krien F; Kauch A
    Eur Phys J B; 2022; 95(4):69. PubMed ID: 35531566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An advanced multi-orbital impurity solver for dynamical mean field theory based on the equation of motion approach.
    Feng Q; Oppeneer PM
    J Phys Condens Matter; 2012 Feb; 24(5):055603. PubMed ID: 22248628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation effects of π electrons on the band structures of conjugated polymers using the self-consistent GW approximation with vertex corrections.
    Chang YW; Jin BY
    J Chem Phys; 2012 Jan; 136(2):024110. PubMed ID: 22260567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinant quantum monte carlo study of the orbitally selective mott transition.
    Bouadim K; Batrouni GG; Scalettar RT
    Phys Rev Lett; 2009 Jun; 102(22):226402. PubMed ID: 19658883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach to time-dependent transport through an interacting quantum dot within the Keldysh formalism.
    Vovchenko V; Anchishkin D; Azema J; Lombardo P; Hayn R; Daré AM
    J Phys Condens Matter; 2014 Jan; 26(1):015306. PubMed ID: 24292208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical study of magnetic and pairing correlation in a bilayer triangular lattice.
    Wu S; Li J; Gao P; Liang Y; Ma T
    J Phys Condens Matter; 2013 Sep; 25(37):375601. PubMed ID: 23962850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description.
    Madsen JR; Akabani G
    Phys Med Biol; 2014 May; 59(9):2285-305. PubMed ID: 24731979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General biorthogonal projected bases as applied to second-order Møller-Plesset perturbation theory.
    Weijo V; Manninen P; Jørgensen P; Christiansen O; Olsen J
    J Chem Phys; 2007 Aug; 127(7):074106. PubMed ID: 17718605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model.
    Kutepov AL
    J Phys Condens Matter; 2015 Aug; 27(31):315603. PubMed ID: 26199232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational methods in coupled electron-ion Monte Carlo simulations.
    Pierleoni C; Ceperley DM
    Chemphyschem; 2005 Sep; 6(9):1872-8. PubMed ID: 16088971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum-classical Liouville dynamics in the mapping basis.
    Kim H; Nassimi A; Kapral R
    J Chem Phys; 2008 Aug; 129(8):084102. PubMed ID: 19044813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the two-particle propagator for the Hubbard model with the help of the Hubbard-I approximation.
    Rozhkov AV; Rakhmanov AL
    J Phys Condens Matter; 2011 Feb; 23(6):065601. PubMed ID: 21406930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum statistics and thermodynamics in the harmonic approximation.
    Armstrong JR; Zinner NT; Fedorov DV; Jensen AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021117. PubMed ID: 22463163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linked-cluster expansion for the Green's function of the infinite-U Hubbard model.
    Khatami E; Perepelitsky E; Rigol M; Shastry BS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063301. PubMed ID: 25019906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent developments in quantum Monte Carlo simulations with applications for cold gases.
    Pollet L
    Rep Prog Phys; 2012 Sep; 75(9):094501. PubMed ID: 22885729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic cluster quantum Monte Carlo simulations of a two-dimensional Hubbard model with stripelike charge-density-wave modulations: interplay between inhomogeneities and the superconducting state.
    Maier TA; Alvarez G; Summers M; Schulthess TC
    Phys Rev Lett; 2010 Jun; 104(24):247001. PubMed ID: 20867327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bethe free-energy approximations for disordered quantum systems.
    Biazzo I; Ramezanpour A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062137. PubMed ID: 25019754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.