These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19905552)

  • 1. Atomtronic circuits of diodes and transistors.
    Pepino RA; Cooper J; Anderson DZ; Holland MJ
    Phys Rev Lett; 2009 Oct; 103(14):140405. PubMed ID: 19905552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of quantum criticality with ultracold atoms in optical lattices.
    Zhang X; Hung CL; Tung SK; Chin C
    Science; 2012 Mar; 335(6072):1070-2. PubMed ID: 22345397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges and constraints of dynamically emerged source and sink in atomtronic circuits: From closed-system to open-system approaches.
    Lai CY; Chien CC
    Sci Rep; 2016 Nov; 6():37256. PubMed ID: 27849034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile apparatus for two-dimensional atomtronic quantum simulation.
    Haase TA; White DH; Brown DJ; Herrera I; Hoogerland MD
    Rev Sci Instrum; 2017 Nov; 88(11):113102. PubMed ID: 29195367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tonks-Girardeau gas of ultracold atoms in an optical lattice.
    Paredes B; Widera A; Murg V; Mandel O; Fölling S; Cirac I; Shlyapnikov GV; Hänsch TW; Bloch I
    Nature; 2004 May; 429(6989):277-81. PubMed ID: 15152247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mott domains of bosons confined on optical lattices.
    Batrouni GG; Rousseau V; Scalettar RT; Rigol M; Muramatsu A; Denteneer PJ; Troyer M
    Phys Rev Lett; 2002 Sep; 89(11):117203. PubMed ID: 12225165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peierls substitution in an engineered lattice potential.
    Jiménez-García K; LeBlanc LJ; Williams RA; Beeler MC; Perry AR; Spielman IB
    Phys Rev Lett; 2012 Jun; 108(22):225303. PubMed ID: 23003612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum many particle systems in ring-shaped optical lattices.
    Amico L; Osterloh A; Cataliotti F
    Phys Rev Lett; 2005 Aug; 95(6):063201. PubMed ID: 16090948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin gradient thermometry for ultracold atoms in optical lattices.
    Weld DM; Medley P; Miyake H; Hucul D; Pritchard DE; Ketterle W
    Phys Rev Lett; 2009 Dec; 103(24):245301. PubMed ID: 20366208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do mixtures of bosonic and fermionic atoms adiabatically heat up in optical lattices?
    Cramer M; Ospelkaus S; Ospelkaus C; Bongs K; Sengstock K; Eisert J
    Phys Rev Lett; 2008 Apr; 100(14):140409. PubMed ID: 18518014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultracold atoms in a tunable optical kagome lattice.
    Jo GB; Guzman J; Thomas CK; Hosur P; Vishwanath A; Stamper-Kurn DM
    Phys Rev Lett; 2012 Jan; 108(4):045305. PubMed ID: 22400856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental realization of plaquette resonating valence-bond states with ultracold atoms in optical superlattices.
    Nascimbène S; Chen YA; Atala M; Aidelsburger M; Trotzky S; Paredes B; Bloch I
    Phys Rev Lett; 2012 May; 108(20):205301. PubMed ID: 23003151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling spin exchange interactions of ultracold atoms in optical lattices.
    Duan LM; Demler E; Lukin MD
    Phys Rev Lett; 2003 Aug; 91(9):090402. PubMed ID: 14525163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strongly correlated quantum walks in optical lattices.
    Preiss PM; Ma R; Tai ME; Lukin A; Rispoli M; Zupancic P; Lahini Y; Islam R; Greiner M
    Science; 2015 Mar; 347(6227):1229-33. PubMed ID: 25766229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum coherence and entanglement with ultracold atoms in optical lattices.
    Bloch I
    Nature; 2008 Jun; 453(7198):1016-22. PubMed ID: 18563152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber.
    Vetsch E; Reitz D; Sagué G; Schmidt R; Dawkins ST; Rauschenbeutel A
    Phys Rev Lett; 2010 May; 104(20):203603. PubMed ID: 20867028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic photoconductivity of ultracold fermions in optical lattices.
    Heinze J; Krauser JS; Fläschner N; Hundt B; Götze S; Itin AP; Mathey L; Sengstock K; Becker C
    Phys Rev Lett; 2013 Feb; 110(8):085302. PubMed ID: 23473159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly coherent spectroscopy of ultracold atoms and molecules in optical lattices.
    Zelevinsky T; Blatt S; Boyd MM; Campbell GK; Ludlow AD; Ye J
    Chemphyschem; 2008 Feb; 9(3):375-82. PubMed ID: 18275047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping ultracold dysprosium: a highly magnetic gas for dipolar physics.
    Lu M; Youn SH; Lev BL
    Phys Rev Lett; 2010 Feb; 104(6):063001. PubMed ID: 20366817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zoo of quantum phases and excitations of cold bosonic atoms in optical lattices.
    Alon OE; Streltsov AI; Cederbaum LS
    Phys Rev Lett; 2005 Jul; 95(3):030405. PubMed ID: 16090725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.