BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19905604)

  • 1. Reduction of viscosity in suspension of swimming bacteria.
    Sokolov A; Aranson IS
    Phys Rev Lett; 2009 Oct; 103(14):148101. PubMed ID: 19905604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical properties of collective motion in suspensions of bacteria.
    Sokolov A; Aranson IS
    Phys Rev Lett; 2012 Dec; 109(24):248109. PubMed ID: 23368392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective viscosity of dilute bacterial suspensions: a two-dimensional model.
    Haines BM; Aronson IS; Berlyand L; Karpeev DA
    Phys Biol; 2008 Nov; 5(4):046003. PubMed ID: 19029599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport powered by bacterial turbulence.
    Kaiser A; Peshkov A; Sokolov A; ten Hagen B; Löwen H; Aranson IS
    Phys Rev Lett; 2014 Apr; 112(15):158101. PubMed ID: 24785075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speed of a swimming sheet in Newtonian and viscoelastic fluids.
    Dasgupta M; Liu B; Fu HC; Berhanu M; Breuer KS; Powers TR; Kudrolli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013015. PubMed ID: 23410434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial swimming and oxygen transport near contact lines.
    Tuval I; Cisneros L; Dombrowski C; Wolgemuth CW; Kessler JO; Goldstein RE
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2277-82. PubMed ID: 15699341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise.
    Ryan SD; Haines BM; Berlyand L; Ziebert F; Aranson IS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):050904. PubMed ID: 21728480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional model for the effective viscosity of bacterial suspensions.
    Haines BM; Sokolov A; Aranson IS; Berlyand L; Karpeev DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041922. PubMed ID: 19905357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective swimming and the dynamics of bacterial turbulence.
    Wolgemuth CW
    Biophys J; 2008 Aug; 95(4):1564-74. PubMed ID: 18469071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling.
    Jibuti L; Zimmermann W; Rafaï S; Peyla P
    Phys Rev E; 2017 Nov; 96(5-1):052610. PubMed ID: 29347779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Newtonian viscosity of Escherichia coli suspensions.
    Gachelin J; Miño G; Berthet H; Lindner A; Rousselet A; Clément E
    Phys Rev Lett; 2013 Jun; 110(26):268103. PubMed ID: 23848926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.
    Gyrya V; Lipnikov K; Aranson IS; Berlyand L
    J Math Biol; 2011 May; 62(5):707-40. PubMed ID: 20563812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Film depth and concentration banding in free-surface Couette flow of a suspension.
    Timberlake BD; Morris JF
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):895-910. PubMed ID: 12804220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective viscosity of microswimmer suspensions.
    Rafaï S; Jibuti L; Peyla P
    Phys Rev Lett; 2010 Mar; 104(9):098102. PubMed ID: 20367014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid flows created by swimming bacteria drive self-organization in confined suspensions.
    Lushi E; Wioland H; Goldstein RE
    Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9733-8. PubMed ID: 24958878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sheared active fluids: thickening, thinning, and vanishing viscosity.
    Giomi L; Liverpool TB; Marchetti MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051908. PubMed ID: 20866262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.
    Cui Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031911. PubMed ID: 21517529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective Rheological Properties in Semi-dilute Bacterial Suspensions.
    Potomkin M; Ryan SD; Berlyand L
    Bull Math Biol; 2016 Mar; 78(3):580-615. PubMed ID: 27025378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the role of water in Bacillus subtilis colonies.
    Mezanges X; Regeard C; Gerin C; Deroulers C; Grammaticos B; Badoual M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041913. PubMed ID: 22680504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swimming at low Reynolds number in fluids with odd, or Hall, viscosity.
    Lapa MF; Hughes TL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043019. PubMed ID: 24827344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.