These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 19905638)
1. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Edwards B; Alù A; Silveirinha MG; Engheta N Phys Rev Lett; 2009 Oct; 103(15):153901. PubMed ID: 19905638 [TBL] [Abstract][Full Text] [Related]
2. Parallel-plate metamaterials for cloaking structures. Silveirinha MG; Alù A; Engheta N Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036603. PubMed ID: 17500805 [TBL] [Abstract][Full Text] [Related]
3. Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles. Monti A; Bilotti F; Toscano A Opt Lett; 2011 Dec; 36(23):4479-81. PubMed ID: 22139215 [TBL] [Abstract][Full Text] [Related]
4. Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal-Dielectric Hybrid Metamaterials. Zhang F; Li C; Fan Y; Yang R; Shen NH; Fu Q; Zhang W; Zhao Q; Zhou J; Koschny T; Soukoulis CM Adv Mater; 2019 Sep; 31(39):e1903206. PubMed ID: 31385386 [TBL] [Abstract][Full Text] [Related]
5. Invisibility and cloaking based on scattering cancellation. Chen PY; Soric J; Alù A Adv Mater; 2012 Nov; 24(44):OP281-304. PubMed ID: 23080411 [TBL] [Abstract][Full Text] [Related]
6. Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure. Liu X; Feng Y; Zhu B; Zhao J; Jiang T Sci Rep; 2016 Feb; 6():20448. PubMed ID: 26842340 [TBL] [Abstract][Full Text] [Related]
7. Plasmonic cloaking for irregular objects with anisotropic scattering properties. Tricarico S; Bilotti F; Alù A; Vegni L Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026602. PubMed ID: 20365667 [TBL] [Abstract][Full Text] [Related]
8. Cloaking and transparency for collections of particles with metamaterial and plasmonic covers. Alu A; Engheta N Opt Express; 2007 Jun; 15(12):7578-90. PubMed ID: 19547084 [TBL] [Abstract][Full Text] [Related]
9. Electromagnetic wave cloaking and scattering around an antiresonance-resonance symmetrical pair in the frequency domain. Naito T; Tanaka T; Fukuma Y; Sakai O Phys Rev E; 2019 Jan; 99(1-1):013204. PubMed ID: 30780304 [TBL] [Abstract][Full Text] [Related]
10. From Flexible and Stretchable Meta-Atom to Metamaterial: A Wearable Microwave Meta-Skin with Tunable Frequency Selective and Cloaking Effects. Yang S; Liu P; Yang M; Wang Q; Song J; Dong L Sci Rep; 2016 Feb; 6():21921. PubMed ID: 26902969 [TBL] [Abstract][Full Text] [Related]
11. Wideband and multi-frequency infrared cloaking of spherical objects by using the graphene-based metasurface. Shokati E; Granpayeh N; Danaeifar M Appl Opt; 2017 Apr; 56(11):3053-3058. PubMed ID: 28414362 [TBL] [Abstract][Full Text] [Related]
12. Thin low-loss dielectric coatings for free-space cloaking. Urzhumov Y; Landy N; Driscoll T; Basov D; Smith DR Opt Lett; 2013 May; 38(10):1606-8. PubMed ID: 23938884 [TBL] [Abstract][Full Text] [Related]
13. Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering. Kort-Kamp WJ; Rosa FS; Pinheiro FA; Farina C J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):1969-76. PubMed ID: 25401436 [TBL] [Abstract][Full Text] [Related]
14. Nonideal ultrathin mantle cloak for electrically large conducting cylinders. Liu S; Zhang HC; Xu HX; Cui TJ J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):2075-82. PubMed ID: 25401449 [TBL] [Abstract][Full Text] [Related]
15. Scattering and cloaking of binary hyper-particles in metamaterials. Alexopoulos A; Yau KS Opt Express; 2010 Sep; 18(19):19626-44. PubMed ID: 20940858 [TBL] [Abstract][Full Text] [Related]
16. AlN-SWCNT Metacomposites Having Tunable Negative Permittivity in Radio and Microwave Frequencies. Singh R; Chakravarty A; Mishra S; Prajapati RC; Dutta J; Bhat IK; Pandel U; Biswas SK; Muraleedharan K ACS Appl Mater Interfaces; 2019 Dec; 11(51):48212-48220. PubMed ID: 31829543 [TBL] [Abstract][Full Text] [Related]
17. Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm. Smolyaninov II; Hung YJ; Davis CC Opt Lett; 2008 Jun; 33(12):1342-4. PubMed ID: 18552952 [TBL] [Abstract][Full Text] [Related]
18. A metamaterial-free fluid-flow cloak. Tay F; Zhang Y; Xu H; Goh H; Luo Y; Zhang B Natl Sci Rev; 2022 Sep; 9(9):nwab205. PubMed ID: 36248071 [TBL] [Abstract][Full Text] [Related]
19. Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry. Edwards B; Engheta N Phys Rev Lett; 2012 May; 108(19):193902. PubMed ID: 23003040 [TBL] [Abstract][Full Text] [Related]
20. A single-layer wide-angle negative-index metamaterial at visible frequencies. Burgos SP; de Waele R; Polman A; Atwater HA Nat Mater; 2010 May; 9(5):407-12. PubMed ID: 20400955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]