These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19905641)

  • 21. Lyapunov generation of entanglement and the correspondence principle.
    Petitjean C; Jacquod P
    Phys Rev Lett; 2006 Nov; 97(19):194103. PubMed ID: 17155635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison between covariant and orthogonal Lyapunov vectors.
    Yang HL; Radons G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046204. PubMed ID: 21230362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cycles homoclinic to chaotic sets; robustness and resonance.
    Ashwin P
    Chaos; 1997 Jun; 7(2):207-220. PubMed ID: 12779649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synchronization in driven versus autonomous coupled chaotic maps.
    Pineda M; Cosenza MG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):057201. PubMed ID: 16089699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classical dynamics on graphs.
    Barra F; Gaspard P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066215. PubMed ID: 11415214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lyapunov statistics and mixing rates for intermittent systems.
    Pires CJ; Saa A; Venegeroles R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066210. PubMed ID: 22304181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks.
    Feng CF; Xu XJ; Wang SJ; Wang YH
    Chaos; 2008 Jun; 18(2):023117. PubMed ID: 18601484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stepwise structure of Lyapunov spectra for many-particle systems using a random matrix dynamics.
    Taniguchi T; Morriss GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056202. PubMed ID: 12059675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unstable evolution of pointwise trajectory solutions to chaotic maps.
    Fox RF
    Chaos; 1995 Dec; 5(4):619-633. PubMed ID: 12780218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transfer entropy computation using the Perron-Frobenius operator.
    Diego D; Haaga KA; Hannisdal B
    Phys Rev E; 2019 Apr; 99(4-1):042212. PubMed ID: 31108690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite-space Lyapunov exponents and pseudochaos.
    Kocarev L; Szczepanski J
    Phys Rev Lett; 2004 Dec; 93(23):234101. PubMed ID: 15601163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scaling and interleaving of subsystem Lyapunov exponents for spatio-temporal systems.
    Carretero-Gonzalez R; Orstavik S; Huke J; Broomhead DS; Stark J
    Chaos; 1999 Jun; 9(2):466-482. PubMed ID: 12779843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-dependent mode structure for Lyapunov vectors as a collective movement in quasi-one-dimensional systems.
    Taniguchi T; Morriss GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016218. PubMed ID: 15697709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predictable nonwandering localization of covariant Lyapunov vectors and cluster synchronization in scale-free networks of chaotic maps.
    Kuptsov PV; Kuptsova AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032901. PubMed ID: 25314498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chaotic itinerancy based on attractors of one-dimensional maps.
    Sauer T
    Chaos; 2003 Sep; 13(3):947-52. PubMed ID: 12946187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectral properties of dissipative chaotic quantum maps.
    Braun D
    Chaos; 1999 Sep; 9(3):730-737. PubMed ID: 12779869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Can potentially useful dynamics to solve complex problems emerge from constrained chaos and/or chaotic itinerancy?
    Nara S
    Chaos; 2003 Sep; 13(3):1110-21. PubMed ID: 12946204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamics of chaotic relaxation processes.
    Lippolis D
    Phys Rev E; 2024 Aug; 110(2-1):024215. PubMed ID: 39294936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control.
    Farivar F; Shoorehdeli MA
    ISA Trans; 2012 Jan; 51(1):50-64. PubMed ID: 21868010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling.
    Sigalov G; Gendelman OV; AL-Shudeifat MA; Manevitch LI; Vakakis AF; Bergman LA
    Chaos; 2012 Mar; 22(1):013118. PubMed ID: 22462994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.