These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 19905722)

  • 41. Two-photon interference with a semiconductor integrated source at room temperature.
    Caillet X; Orieux A; Lemaître A; Filloux P; Favero I; Leo G; Ducci S
    Opt Express; 2010 May; 18(10):9967-75. PubMed ID: 20588851
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity.
    Solomon GS; Pelton M; Yamamoto Y
    Phys Rev Lett; 2001 Apr; 86(17):3903-6. PubMed ID: 11329353
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot.
    Patel RB; Bennett AJ; Cooper K; Atkinson P; Nicoll CA; Ritchie DA; Shields AJ
    Phys Rev Lett; 2008 May; 100(20):207405. PubMed ID: 18518580
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bright Telecom-Wavelength Single Photons Based on a Tapered Nanobeam.
    Lee CM; Buyukkaya MA; Harper S; Aghaeimeibodi S; Richardson CJK; Waks E
    Nano Lett; 2021 Jan; 21(1):323-329. PubMed ID: 33338376
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Screening Nuclear Field Fluctuations in Quantum Dots for Indistinguishable Photon Generation.
    Malein RN; Santana TS; Zajac JM; Dada AC; Gauger EM; Petroff PM; Lim JY; Song JD; Gerardot BD
    Phys Rev Lett; 2016 Jun; 116(25):257401. PubMed ID: 27391751
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity.
    Gallardo E; Martínez LJ; Nowak AK; van der Meulen HP; Calleja JM; Tejedor C; Prieto I; Granados D; Taboada AG; García JM; Postigo PA
    Opt Express; 2010 Jun; 18(12):13301-8. PubMed ID: 20588459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Erasing distinguishability using quantum frequency up-conversion.
    Takesue H
    Phys Rev Lett; 2008 Oct; 101(17):173901. PubMed ID: 18999748
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical Transparency Induced by a Largely Purcell Enhanced Quantum Dot in a Polarization-Degenerate Cavity.
    Singh H; Farfurnik D; Luo Z; Bracker AS; Carter SG; Waks E
    Nano Lett; 2022 Oct; 22(19):7959-7964. PubMed ID: 36129824
    [TBL] [Abstract][Full Text] [Related]  

  • 50. All-Optical Tuning of Indistinguishable Single Photons Generated in Three-Level Quantum Systems.
    Dusanowski Ł; Gustin C; Hughes S; Schneider C; Höfling S
    Nano Lett; 2022 May; 22(9):3562-3568. PubMed ID: 35486678
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip.
    Xu X; Xie Z; Zheng J; Liang J; Zhong T; Yu M; Kocaman S; Lo GQ; Kwong DL; Englund DR; Wong FN; Wong CW
    Opt Express; 2013 Feb; 21(4):5014-24. PubMed ID: 23482034
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The single quantum dot-laser: lasing and strong coupling in the high-excitation regime.
    Gies C; Florian M; Gartner P; Jahnke F
    Opt Express; 2011 Jul; 19(15):14370-88. PubMed ID: 21934800
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Subnatural linewidth single photons from a quantum dot.
    Matthiesen C; Vamivakas AN; Atatüre M
    Phys Rev Lett; 2012 Mar; 108(9):093602. PubMed ID: 22463634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity.
    McCutcheon MW; Chang DE; Zhang Y; Lukin MD; Loncar M
    Opt Express; 2009 Dec; 17(25):22689-703. PubMed ID: 20052195
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spin-resolved Purcell effect in a quantum dot microcavity system.
    Ren Q; Lu J; Tan HH; Wu S; Sun L; Zhou W; Xie W; Sun Z; Zhu Y; Jagadish C; Shen SC; Chen Z
    Nano Lett; 2012 Jul; 12(7):3455-9. PubMed ID: 22698083
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference.
    Chen Y; Ecker S; Wengerowsky S; Bulla L; Joshi SK; Steinlechner F; Ursin R
    Phys Rev Lett; 2018 Nov; 121(20):200502. PubMed ID: 30500221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spontaneous two-photon emission from a single quantum dot.
    Ota Y; Iwamoto S; Kumagai N; Arakawa Y
    Phys Rev Lett; 2011 Dec; 107(23):233602. PubMed ID: 22182088
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical nonlinearity for few-photon pulses on a quantum dot-pillar cavity device.
    Loo V; Arnold C; Gazzano O; Lemaître A; Sagnes I; Krebs O; Voisin P; Senellart P; Lanco L
    Phys Rev Lett; 2012 Oct; 109(16):166806. PubMed ID: 23215114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.